

Global Aerosol Data from CALIOP

Dave Winker NASA Langley Research Center

AeroCom Workshop, VA Beach, 17 Oct 2006

705 km, sun-synchronous orbit Three co-aligned instruments:

- CALIOP: polarization lidar
- IIR: Imaging IR radiometer
- WFC: Wide-Field Camera

Calipso Footprint

Launch: 28 April 2006 Three-year mission

(one) CALIPSO objective: Improvement of modelbased assessments of Direct Aerosol Forcing

1 0

Models disagree wildly on the vertical and geographical distribution of aerosols

Land/Ocear Clouds $(\tau_{c} > 10)$ 0.8 Coolina 0.6 Heating $\omega_{\rm cr}$ 0.4 0.2 10% upscatter fraction 30% upscatter fraction 0.0 0.2 04 06 0.8 0.0 1.0 Surface Reflectance

CALIPSO provides data to test model predictions of aerosol forcing:

- Aerosol height
 - > Lifetime, geographic distribution (winds)
 - > Aerosol radiative effects above cloud are different than in clear skies
- Profiles enable backtrajectories to identify aerosol sources and type

CALIPSO First-Light Observations All 3 Lidar Channels

cries

Clear-Air Profiles (June 14)

Calibration-region signal: 30-34 km

Initial Lidar Calibration Fit

(200+ orbits, ~ 2 weeks)

Extended Latitude (°)

Sahara Dust with Embedded Clouds

4.0 3.0

2.0 1.0×10^{-2} 8.0 7.5 7.0 6.56.0 5.55.0<u>4</u> F 4.0 3.5 3.0 2.52.0 1.5 1.0×10^{-3} 9.0 8.0 7.0 6.0 5.04.0 3.0 2.0

an arrest and a she in the first of the

23.67 39.90

CENTRE NATIONAL D'ETUDES SPATIALES

10 August

daytime

Profile over Tamanrasset: 15 June

CENTRE NATIONAL D'ETUDES SPATIALES

Level 1 (geolocated and calibrated)

- DP1.1 profiles of attenuated lidar backscatter (532, 1064, , 532^{\perp})
- DP 1.2 IR radiances (8.65, 10.6, 12.05 μm)
- DP 1.3 WFC radiances (650 nm)

Level 2

- DP 2.1A Cloud/Aerosol layer product
 - layer base and top heights, layer-integrated properties
- DP 2.1B Aerosol profile product
 - backscatter, extinction, depolarization profiles
- DP 2.1C Cloud profile product
 - backscatter, extinction, depolarization, ice/water content profiles
- DP2.1D Vertical mask
 - cloud/aerosol locations
- Also: products from IIR + CALIOP + WFC: cloud $T_B(\lambda)$, emissivity, r_e

Level 3

Summary statistics on a global grid

CALIPSO 16-day Orbit Repeat Pattern

3E

- A-train: 16-day repeat cycle
- CALIPSO controlled to +/- 10 km at Equator crossing
- CloudSat slaved to CALIPSO

• PARASOL, Aura fly to the west of Aqua

- Sunglint impacts MODIS aerosol retrievals for glint angles $\theta_g < 40^{\circ}$
- CALIPSO flies east of Aqua during daytime (215 km offset at the equator) to avoid glint in the MODIS view of the CALIPSO footprint

- Aerosol profiles/layering → constraints on model transport (V, H)
- Height, sphericity, size \rightarrow information related to aerosol type
- Expands aerosol observations available from passive sensors
 - at night, under thin cirrus, polar regions
- Greater sensitivity to low AOD
 - Evaluate lower limit of sensitivity of MODIS, OMI, etc.
 - constraints on removal mechanisms
- Evaluate performance and limitations of cloud-screening algorithms used in passive aerosol retrievals
 - Location and frequency of thin cirrus
 - Use profile data to investigate the aerosol-cloud "continuum" (aerosol swelling, cloud-processing of aerosol, cloud fragments near cloud edges, etc.)