The effect of harmonized emissions on aerosol properties in global models - an AeroCom experiment

> Christiane Textor^{1,2}, Michael Schulz², Sarah Guibert ^{formerly at 2}, Stefan Kinne³

Service d'Aéronomie, France
 LSCE, Gif sur Yvette, France
 MPI Met, Hamburg, Germany

&

AeroCom participants

Outline ➢emissions ≽load ➢ particle sizes ➢ residence times, removal processes ➤ composition ➢ optical properties ➢ conclusions, outlook

emissions

AeroCom Experiment B

Prescribed emissions:

- 2d/3d fields for dust, sea salt, SO2, SO4, DMS, BC, POM
- Particle sizes

Dentener et al. ACP 2006

Relative changes in emitted masses Exp B in relation to Exp A

- More SS and DU Less BC and POM
- Unchanged SO4

Exp B: "unified" gobal aerosol emissions

Model diversity of emissions in Exp A and Exp B

 $data = \frac{model-all models average}{all models average} *100$

diversity = Standarddeviation of data

global annual averages year 2000 if available Differences in model versions in Exp A and B

- KYU indirect effect included, carbonaceous aerosols: internal/external mixtures in ExpA/B
- DLR coarse mode included,

updated water uptake (EQSAM)

- LOA no dry deposition for fine aerosols
- MATCH prescribed SS
- UIO_GCM prescribed SS and DU
- ARQM flawed implementation of ExpB emission

Model diversity of total aerosol mass in Exp A and Exp B

Harmonized emissions do not harmonize aerosol mass !

global annual averages year 2000 if available

Aerocom B emissions: potential problems

- How are the fields interpolated to the model grid?
- How are the emissions filled into the vertical grid?
- How are the sizes represented?
- Bugs...

particle sizes

Mass fraction per size class in Exp A and B

Similar sizes for fine fraction in Exp A and B

global annual averages year 2000 if available

Mass fraction / size class in Exp B: DU and SS

DUST

SeaSalt

Unified size (?) of emitted particles is not transmitted to load.

Size classes Radius intervals [mum] Acc <0.5 Coa 0.5 – 1.25 Sup >1.25

Mass fraction per size class in Exp A and B

DUST SeaSalt Fraction of total [%] Fraction of total [%] n 148 018 018 18 18 108 148 148 118 118

- Particle size is similar for a given model for both experiments.
- Different representation of sizes in schemes?
- Deficiency of AeroCom diagnostics?

Size classes Radius intervals [mum] Acc <0.5 Coo 0.5 – 1.25 Sup >1.25

Residence times

-100

ARQNIR GISS KYU LOA LSCENATCHY CN CTNG CNG Q

UN

spatial distributions and particle sizes.

Split of Removal pathways

Results of the two exp's are more similar for a given model than for a given experiment.

Split between stratiform and convective wet depostion

simulated spatial aerosol distributions

Aerosol load in Exp B [mg/m²]

Longitude

TM5_B2 Mean: 3.55939E+01 mg/m^2

UMI_B Mean: 5.48387E+01 mg/m^2

Longitude

Meridional distribution of Aerosols

load

... is model specific

Vertical distribution of Aerosols

SO4 zonal concentration

... is model specific

Textor et al. 2006

Mass fractions for components

composition

Composition contribution to total mass per component

Optical properties

Aerosol Optical Depth per component

Aerosol Optical Depth

Harmonized emissions do not harmonize aerosol optical depth !

Conclusions

- Implementation of prescribed aerosol (precursor) sources is not straightforward.
- The diversity among model results is about the same in both experiments.
- Harmonizing emissions has only a small impact, models are 'pre-wired'.
- > <u>Aerosol microphysics is not the only problem.</u>
- Important implications for pollution abatement strategies inferred from such model results.

Outlook: Modeling of aerosols - a " 4 Step process "

THANK YOU !

The aerosol life cycle

Sink processes analysis

The rates differ between the species: wet removal rates increase with the solubility from DU, BC, POM to SO4 and SS. dry removal rates increase with the particle sizes.

> main removal processes BC, POM to SO4: > 80% wet dep.

DU and SS: ~66% dry dep.

Why do the removal rates for a given species differ between the models ?

Removal rate vs vertical dispersal

Faster sink rate for BC than for POM

Composition

Mass Extinction coefficient

MEC

= AOD550

/dryload

= 3*opt_prop/(4*rho*r_eff) *(water+dryload)/dryload)

Chin et al., JAS 59, 461-483,2002

Comparison to Observations

Exp B

Smaller AOD due to smaller anthropogenic emissions

•Better match to obs