The effect of harmonized emissions on aerosol properties in global models an AeroCom experiment

> Christiane Textor^{1,2}, Michael Schulz², Sarah Guibert ^{formerly at 2}, Stefan Kinne³

1 Service d'Aéronomie, France 2 LSCE, Gif sur Yvette, France 3 MPI Met, Hamburg, Germany

&

AeroCom participants

Outline \triangleright emissions loadparticle sizes residence times, removal processes **Examposition** optical properties conclusions, outlook

emissions

AeroCom Experiment B

Prescribed emissions:

- 2d/3d fields for dust, sea salt, SO2, SO4, DMS, BC, POM
- Particle sizes

Dentener et al. ACP 2006

Relative changes in emitted masses Exp B in relation to Exp A

- More SS and DU Less BC and POM
- Unchanged SO4

Exp B: "unified" gobal aerosol emissions

Model diversity of emissions in $Exp A$ and $Exp B$

*100 data=<mark>model-all models average</mark>
all models average

diversity = Standarddeviation of data

global annual averages year 2000 if available

Differences in model versions in Exp A and B

- KYU indirect effect included, carbonaceous aerosols: internal/external mixtures in ExpA/B
- DLR coarse mode included,

updated water uptake (EQSAM)

- · LOA no dry deposition for fine aerosols
- MATCH prescribed SS
- UIO_GCM prescribed SS and DU
- •ARQM flawed implementation of ExpB emission

Model diversity of total aerosol mass in Exp A and Exp B

Harmonized emissions do not harmonize aerosol mass !

global annual averages year 2000 if available

Aerocom B emissions: potential problems

- How are the fields interpolated to the model grid?
- How are the emissions filled into the vertical grid?
- How are the sizes represented?
- Bugs…

particle sizes

Mass fraction per size class in Exp A and B

Similar sizes for fine fraction in Exp A and B

global annual averages year 2000 if available

Mass fraction / size class in Exp B: DU and SS

DUST

SeaSalt

Unified size (?) of emitted particles is not transmitted to load.

Size classes Radius intervals [mum] < 0.5 Ann 0.5 – 1.25 'nn >1.25 ISuo

Mass fraction per size class in Exp A and B

DUST SeaSalt Fraction of total [%] Fraction of total [%] and als of the cas was we are used 148 98 98 118 1 8 148 148 48 48 48

- Particle size is similar for a given model for both experiments.
- Different representation of sizes in schemes?
- Deficiency of AeroCom diagnostics?

Residence times

 -60

 -80

 -100

AROMA GISSAY LOA LSCE MATCH ZON CINOCIN COMP

 U_{ℓ}

Effects of modified spatial distributions and particle sizes.

Split of Removal pathways

Results of the two exp's are more similar for a given model than for a given experiment.

Split between stratiform and convective wet depostion

simulated spatial aerosol distributions

Aerosol load in Exp B [mg/m²]

TM5_B2 Mean: 3.55939E+01 mg/m^2

UMI_B Mean: 5.48387E+01 mg/m^2

MOZGN_B Mean: 8.35481E+01 mg/m²

UIO_GCM_B Mean: 6.05213E+01 mg/m²

Longitude

LOA_B Mean: 6.58186E+01 mg/m²

ULAQ_B Mean: 6.24246E+01 mg/m^2

Meridional distribution of Aerosols

load

Mass fractions for components in polar region (>80 degree) 12 18 11 10 9 Fraction of total [%] 8 6 5 4 3 2 1 Ω **ARQM ARQMB DLR DLRB GISSB**
GISSB **KYUB** ULAQB \tilde{z} \subseteq **SIMIB** ZOM ZOM $\overline{5}$ $rac{1}{2}$ $\frac{c}{\overline{c}}$ DAAQ **MATCH** MAT **UIOGCME** ģ SCEB OAB SCE 요 **GNB** \leq ᇚ

… is model specific

Vertical distribution of Aerosols Vertical distribution of Aerosols

SO4 zonal concentration

… is model specific

Textor et al. 2006

Mass fractions for components

composition

Composition contribution to total mass per component

Optical properties

Aerosol Optical Depth per component

Aerosol Optical Depth

Harmonized emissions do not harmonize aerosol optical depth !

Conclusions

- ¾ Implementation of prescribed aerosol Implementation of prescribed aerosol (precursor) sources is not straightforward. (precursor) sources is not straightforward.
- \triangleright The diversity among model results is about the same in both experiments.
- \triangleright Harmonizing emissions has only a small impact, models are 'pre-wired'.
- ¾ Aerosol microphysics is not the only problem. Aerosol microphysics is not the only problem.
- \triangleright Important implications for pollution abatement strategies inferred from such model results.

Outlook: Modeling of aerosols - a " 4 Step process "

THANK YOU !

The aerosol aerosol life cycle

Sink processes processes analysis analysis

The rates differ between the species:

¾**wet removal rates** increase with the solubility from DU, BC, POM to SO4 and SS.

^¾**dry removal rates** increase with the particle sizes.

^¾**main removal processes** BC , POM to SO4: $> 80\%$ wet dep.
DU and SS: $\sim 66\%$ dry dep. $~66\%$ dry dep.

Why do the removal rates for a given species differ between the models ?

Removal rate Removal rate vs vertical vertical dispersal dispersal

Faster sink rate for BC than for POM **?**

Composition

Mass Extinction coefficient

TAMATOR TMO-2010

MOCTION

CTM GCM CCAO^U $\overline{\mathcal{C}_{\mathcal{N}_{\mathcal{U}}}}$

Lock

 $\frac{1}{\sqrt{Q_{4}}}$

G/S_S True

н -10 -20 -30

(ExpB -40 -50 -60 $-70E$

-80 E

ARON ONTA

MEC

∃

= AOD550 /dryload

= 3*opt_prop/(4*rho *r_eff) *(water+dryload)/dryload)

Chin et al., JAS 59, 461-483,2002

Comparison to Observations

Exp B

•Smaller AOD due to smaller anthropogenic emissions

•Better match to obs