

5th AeroCom workshop

17. - 19. October 2006 at Virginia Beach, Virginia, USA

hosted by NASA-Langley and NASA-Goddard

Context and Objectives:

The AeroCom initiative has now accomplished its first phase with a series of publications on the current status of global aerosol modeling (see references in appendix). The forcing results have been very useful to direct the upcoming IPCC fourth assessment report. The documented diversity suggests that further efforts are needed to benchmark the model results against observations in order to ultimately reduce uncertainty in aerosol impact studies on climate and health. AeroCom workshops in the past have been shown to be a good opportunity to discuss problems associated with aerosol modeling and the appropriate use of observations to benchmark model results. The workshop will provide a forum to present recent developments and an opportunity to discuss a second phase of experiments and the future use of the AeroCom database.

More specifically the objectives of the 5th AeroCom workshop are to

- Review recent modeling work and observation comparisons within AeroCom on aerosol properties and direct and indirect forcing estimates
- Discuss the use of new aerosol quality products for model evaluations, in particular the new collections of sensor data-processing (MODIS and MISR), CERES flux data, and A-train data.
- Inform each other on the use of data assimilation efforts under way to obtain improved merged data products from observations and models
- Discuss the use and development of the AeroCom tools to monitor more efficiently progress and quality of global aerosol models. Inform each other and agree upon standards to document model versions and model output

- Plan specific new experiments to understand model diversity with respect to aerosol dynamics, transport and removal processes
- Plan new experiments to establish "ensemble" products:

 calculation of inter-hemispheric transport (together with HTAP convention)
 establish source receptor relationships for continental scale regions
 establish a future (emission) scenarios of aerosol fields
- Inform each other on chemical forecast efforts with respect to aerosol modeling
- Review aerosol forcing estimates and aerosol climate interaction experiments

The program has been set up to have presentations in blocks of only four each, so that with the many breaks, attention levels can remain high. In addition, panel discussions at the end of each major topic allow for extra discussion time.

5th AeroCom - workshop program

Day 1 (Oct. 17th)

Block 0 8.30-9.00

Block 1

Block 3

9.10-10.50

13.30-14.20

welcome, scope, (brief) review

R. Ferrare	local	15	welcome and logistics
M. Schulz	project	15	what we have achieved so far (review)

10min break

aerosol properties –part 1

l models
lations
ıg

chair: J.Wilson

20min coffee-break

			DIOCK 2	11.10-12.30
aerosol prop	erties –par	t 2	chair: J.F. Leon	
Topic: new p	roducts (or	updates), a	ccuracy and preparations for scale	of global models
R. Kahn	satellite	20	(aerosol) air mass mapping with M	IISR
S. DeSouza	satellite	20	dust aerosol retrievals with AIRS	
N.C. Hsu	satellite	20	"Deep Blue" for retrieving AOD o	ver desert
R. Levy	satellite	20	MODIS collection 5 aerosol prope	rties

60min lunch-break

<u>aerosol</u>	properti	ies –part	<u>3</u>	chair: R. Kahn
Topic i	new prod	lucts (or u	pdates), ad	ccuracy issues and limitations for use in modeling
JF. Le	eon sa	tellite	20	aerosol remote sensing with PARASOL and A-train
D. Win	ker sa	tellite	20	CALIOP - promising global data on aerosol altitude
Z. Li (p	opt) sa	tellite	10	GEWEX aerosol data assessment (presented by Chin)

Panel on Data

14.20-14.40

Block 2 11 10-12 30

what most urgent data needs in global modeling? can we quantify accuracy and (sampling) bias issues? how to prepare data to be applicable to (temp./spatial) scales in global modeling?

20min coffee-break

<u>emission data –part 1</u>			chair: P.Ginoux		
Topic: emissi	on input (issues	and un	certainty) emission scenarios		
D. Koch	absorption	20	aerosol absorption in the context of B	C emissions	
T. Bond	future emiss.	20	emission inventories and scenarios		
B. DeAngelo	future emiss.	20	energy modeling forum		
T. Nozawa	past emissions	s 20	BC (black carbon)		
10min break					
			Block 5	16:50-18:10	
<u>emission data –part 2</u>			chair. T. Bond		
Topic: emissi	on input (issues	and un	certainty): past emission		
M. Chin	past emissions	s 20	satellite fire data and biomass burning	g emission	
C. Ichoku	past emissions	s 20	MODIS radiative power for biomass	burning	
P. Ginoux	past emissions	\$ 20	20 th century dust emission	C	
T. Diehl	past emissions	s 20	1980-2005 global aerosol emissions		
10min broak					

context in global research (GEWEX, IPCC)

Block 4

10min break

P. DeCola

5min break

Panel on AeroCom supported emission	n data
updates to the existing data-bas	e?

18:20-18:50

15.20-16.40

what new future scenarios?

15

sponsor

... continue discussions during the evening

Day 2 (Oct 18th)

U X	,		Block 6	8.30-9.40
future and collaborations			chair: M. Schulz	
Topic: where	e are we headin	g		
M. Chin	transport	20	intercontinental transport	
C. Textor	shell GCM	20	influences of harmonizing mod	els (ExpA vs ExpB)
S. Doherty	organization	20	IGAC/WCRP initiative Atmos	Chem. and Climate
M. Schulz	set-up	20	the next years (e.g., benchmark new experiments, database acce formation, link to AC&C and H 5AR-IPCC)	ing, automatization, ess, steering group ITAP, preparation of

10min break

Panel on Future Activities (short term, in one year and in three years) 9.50-10.50 what can we do with data we already have: absorption, PM2.5, wet/dry dep.) do we need to repeat (judge progress?) or fine-tune previous experiments what new experiments (also in the context of other activities) should be pursued? how to share the evaluation task?

what modeling output (e.g. median) should be shared with other communities?

20min coffee-break

Block 7 11.10-12.30

modeling with	data	chair: S.Menon
nal insights fro	om the	use of data and/or smart data -combinations
assimilation	10	MODIS, Anet, surf.data in models (presented by Chin)
assimilation	20	CALIPSO, HSRL, MODIS in regional.modeling
multiple sat	20	cloud and aerosol relationships: MODIS, CERES
multiple sat	20	MODIS and CERES for direct and indirect forcings
	modeling with onal insights fro assimilation assimilation multiple sat multiple sat	modeling with dataonal insights from theassimilationassimilation20multiple sat20multiple sat20

60min lunch-break

modeling aerosol indirect effects chair: P.Collarco

Topic: modeling aerosol indirect effects

S. Menon	multiple sat	20	MODIS and AMSR-E for indirect 'clues'
J. Penner	indirect mod	20	first clues from initial studies
A. Nenes	indirect mod	20	Modeling of aerosol indirect effects in a GCM
T. Storelmvo	indirect mod	20	indirect impact involving water clouds

10-min break

Panel on modeling the aerosol indirect effect

Where are the biggest gaps in modeling aerosol indirect effects? Can we rank aerosol indirect effect by their importance? Does modeling even consider all indirect effects? Can data correlations be a constraint to modeling? How meaningful are correlations for interactions or initiator-effect relationships? Which aerosol processes can be tested and constrained by which data? How to construct useful benchmark tests?

30-min coffee-break

			Block 9 16.30-18.00
<u>new developments in modeling</u>			chair: D.Koch
Topic: new ap	proaches in m	odeling	
T. Iverson +	processing	30	aerosol processing sensitivity (Oslo-CCM)
X. Liu	processing	20	aerosol processing concepts (NCAR-CAM3)
H. Bian	modular mod	20	a modular approach to understand processing

15.00-16.00

Block 8 13:30-14.50

at Il Giardino *conference dinner*

19.00

Day 3 (Oct.19th)

•				Block 10	8.30-9.50
forcing /clima	ate impact –pa	<u>art 1</u>	chair: N.Bellouin		
Topics: overvi	iew and indivia	lual imp	pacts		
M. Schulz	overview	20	aerosol impact on clin	mate: AeroCo	m diversity
L. Rotstayn	indirect mod	20	Asian aerosol and rai	nfall in Austra	alia
Y. Balkanski	model-result	20	dust impact (LSCE m	odel)	
A. Lauer	model-result	20	ship emission impact	(ECHAM5-M	IADE model)
30min coffee-l	break				
				Block 11	10.20-11.50
<u>forcing /clima</u>	ate impact –pa	<u>art 2</u>	chair: Y.Balkanski		
Topics: genero	al results from	modeli	ng		
T. Takemura	model-result	20	total aerosol impact (SPRINTARS [®])

T. Takemura	model-result	20	total aerosol impact (SPRINTARS)
P. Stier	model-result	20	aerosol absorption impact (ECHAM5-HAM model)
N. Bellouin	model-result	20	total aerosol impact (Hadley model)
Y. Ming	model-result	20	total aerosol impact (GFDL)
S. Kinne	model-result	10	discrepancy betw. data-tied estimates and modeling

10min break

Panel on simulating the aerosol impact on climate

Have recent simulations (bc, mixing, rh) changed our view on the aerosol impact? Do we understand discrepancies (of climate impact) to data-tied approaches? What aerosol or environm. data are needed most, to reduce impact uncertainties?

Block13

60-min lunch-break

			Block 12	14.00-15.25
<u>related projects</u>			chair: S.Kinne	
Topic: potent	ial for collai	borations		
J. Crawford	project	20	POLARCAT	
T. Charlock	project	20	CERES Surface and Atmosphere F	Radiation Budget
S. Cox	project	15	GEWEX-SRB	
A.Chu	project	20	Air Quality and MODIS	
S.Gong (ppt)	project	10	NARSTO (presented by Kinne)	

5min break

<u>wrap-up</u>

chair: M. Schulz

12:00-13:00

15.30-16.00

APPENDIX I

websites

AeroCom Website with documentation http://nansen.ipsl.jussieu.fr/AEROCOM/

Task Force on Hemispheric Transport of Air Pollution website http://www.htap.org/

publications

- Kinne, S., M. Schulz, C. Textor, S. Guibert, Y. Balkanski, S.E. Bauer, T. Berntsen, T.F. Berglen, O. Boucher, M. Chin, W. Collins, F. Dentener, T. Diehl, R. Easter, J. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, M. Herzog, L. Horowitz, I. Isaksen, T. Iversen, A. Kirkevåg, S. Kloster, D. Koch, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, G. Lesins, X. Liu, U. Lohmann, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, O. Seland, P. Stier, T. Takemura, and X. Tie: An AeroCom initial assessment optical properties in aerosol component modules of global models, ACP, 6, 1-22, 2006
- Textor, C., M. Schulz, S. Guibert, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, M. Chin, F. Dentener, T. Diehl, R. Easter, H. Feichter, D. Fillmore, S. Ghan, P. Ginoux, S. Gong, A. Grini, J. Hendricks, L. Horowitz, P. Huang, I. Isaksen, T. Iversen, S. Kloster, D. Koch, A. Kirkevåg, J.E. Kristjansson, M. Krol, A. Lauer, J.F. Lamarque, X. Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, Ø. Seland, P. Stier, T. Takemura, and X. Tie: Analysis and quantification of the diversities of aerosol life cycles within AeroCom, ACP, 6, 1777-1811, 2006
- Penner, J.E., J.Quaas, T.Storelvmo, T.Takemura, O.Boucher, H.Guo, A.Kirkevag, J.E. Kristjansson and Ø. Seland, Model intercomparison of indirect aerosol effects, ACP, 6, 3391-3405, 2006.
- Dentener, F., S. Kinne, T. Bond, O. Boucher, J. Cofala, S. Generoso, P. Ginoux, S. Gong, J. Hoelzemann, A. Ito, L. Marelli, J. Penner, J.-P. Putaud, C. Textor, M. Schulz, G.v.d. Werf, and J. Wilson: Emissions of primary aerosol and precursor gases in the years 2000 and 1750 -prescribed data-sets for AeroCom, ACP, 6, 4321-4344, 2006
- Schulz, M., C. Textor, S. Kinne, Y. Balkanski, S. Bauer, T. Berntsen, T. Berglen, O. Boucher, F. Dentener, A. Grini, S. Guibert, T. Iversen, D. Koch, A. Kirkevåg, X. Liu, V. Montanaro, G. Myhre, J. Penner, G. Pitari, S. Reddy, Ø. Seland, P. Stier, and T. Takemura: Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations, ACPD 2006