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Is CCN prediction theory and existing aerosol-
cloud parameterizations “good enough”?
How important are organic species for cloud formation? 
Do they:
• Provide solute? What is their MW, solubility?
• Affect droplet surface tension? How much?
• Affect droplet growth rate? When/how much?
How much “inherent” indirect effect uncertainty is 
associated with all these? How does it compare with the 
uncertainty associated with cloud or large-scale 
dynamics?

“Observations can provide the constraints needed.”
But how? (The devil is always in the details).

Goal: assess the uncertainties



General Circulation ModelGeneral Circulation Model
• NASA GISS II’ GCM
• 4’×5’ horizontal resolution
• 9 vertical layers (27-959 mbar)

Aerosol MicrophysicsAerosol Microphysics
• The TwO-Moment Aerosol Sectional (TOMAS) 

microphysics model (Adams and Seinfeld, JGR, 
2002) is applied in the simulations. 

• Model includes 30 size bins from 10 nm to 10 μm.
• For each size bin, model tracks: Aerosol number, 

Sulfate mass, Sea-salt mass

• Bulk microphysics version is also available (for 
coupled feedback runs).

Global Modeling Framework (#1)Global Modeling Framework (#1)



InIn--cloud updraft velocitycloud updraft velocity
• Prescribed (marine: 0.25-0.5 ms-1;continental: 0.5-1 ms-1). 
• Large-scale TKE in a 4’×5’ grid is too separated from the 

cloud scale. 

Global Modeling Framework (#1)Global Modeling Framework (#1)
Cloud droplet number calculationCloud droplet number calculation
Nenes and Seinfeld (2003); Fountoukis and Nenes (2005) 

cloud droplet formation parameterizations.
Sectional and lognormal aerosol formulations.
Can treat complex internal/external aerosol mixtures, and 
effects of organic films on droplet growth kinetics.

EmissionsEmissions
Current day, preindustrial

AutoconversionAutoconversion
Khairoutdinov & Kogan (2000), DelGenio (1996)



Current Day Simulation (annual average)Current Day Simulation (annual average)

Cloud droplets (cmCloud droplets (cm--33)) Cloud Cloud ssmaxmax (%)(%)

Conditions for aerosolConditions for aerosol--cloud linkingcloud linking
Cloud base updraft (m s-1): 0.25 (marine), 0.5 (continental)
Water vapor uptake coefficient: 0.06

Nenes et al., in preparation



Current dayCurrent day--preindustrialpreindustrial indirect forcingindirect forcing

Global Annual Average: -1.02 Wm-2

Nenes et al., in preparation



• 3-D chemistry-transport model (CTM)

• Multiple “packages” for e.g., chemistry & aerosol 

• Metrological inputs from GCMs (GEOS-4 FVGCM & 

GISS-II’) or data assimilation systems (NASA DAO)

• Any vertical resolution; horizontal resolution: 4°x5°

• Multi-year assessment simulations
•We’ve put in the aerosol-cloud interactions and 
radiative calculations.

NASA Global Modeling Initiative (GMI) 

http://gmi.gsfc.nasa.gov/gmi.html

Global Modeling Framework (#2)Global Modeling Framework (#2)



GISS”

-0.98 W m-2 FVGCM

-1.17 W  m-2 DAO

-0.87 W  m-2 GISS”
DAO

NS Parameterization

FVGCM

Sensitivity of IndirectSensitivity of Indirect Forcing to met field (W mForcing to met field (W m--22))

•Depending on the droplet activation 
parameterization and the met field used, 
global annual indirect forcing ranges:

-0.75 W/m2 to  -1.27 W/m2

•Different met fields lead up to 30% (Global 
average) variability in indirect forcing 
calculations.



CIRPAS Twin Otter

Constraining theConstraining the
water vapor water vapor 

uptake coefficientuptake coefficient

Cloud droplet Cloud droplet 
closure during closure during 
ICARTT (2004)ICARTT (2004)

Optimum Optimum 
closure closure 

obtained for obtained for αα
betweenbetween
0.03 0.03 –– 1.0 1.0 

This is the This is the 
range we use in range we use in 

our GCM our GCM 
simulationssimulations
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Current day simulation: Current day simulation: 
Sensitivity of Sensitivity of NNdd to to ww and and aa

wocean=0.5 ms-1; wland=1.0 ms-1

α = 0.06
wocean=0.5 ms-1; wland=1.0 ms-1

α = 1.0

wocean=0.25 ms-1; wland=0.5 ms-1

α = 0.06
wocean=0.25 ms-1; wland=0.5 ms-1

α = 1.0

Droplet number is very sensitive 
to changes in
• Water vapor uptake coefficient 
• Cloud base updraft velocity



PresidustrialPresidustrial--Current Day forcing: Current Day forcing: 
Sensitivity to Sensitivity to ww and and aa

wocean=0.5 ms-1; wland=1.0 ms-1

α = 0.06
wocean=0.5 ms-1; wland=1.0 ms-1

α = 1.0

wocean=0.25 ms-1; wland=0.5 ms-1

α = 0.06
wocean=0.25 ms-1; wland=0.5 ms-1

α = 1.0

Indirect Forcing is not (!) sensitive 
to changes in
• Water vapor uptake coefficient 
• Cloud base updraft velocity

(Provided that both don’t change 
between preindustrial and current day)



Sensitivity of indirect forcing to theSensitivity of indirect forcing to the
water vapor uptake coefficientwater vapor uptake coefficient

αα=1.0 =1.0 -- αα=0.03=0.03 CurrentCurrent--PreindustPreindust..

Forcing uncertainty from α uncertainty (-1.12 W m-2) is as 
large as Present-Preindustrial change (-1.02 W m-2) ! 
Spatial patterns are very different. Nenes et al., in preparation

Wm-2



Sensitivity of indirect forcing to theSensitivity of indirect forcing to the
value of cloudvalue of cloud--base updraft velocitybase updraft velocity

Doubling of updraftDoubling of updraft

Uncertainty in indirect forcing doubling updraft velocity is 
a bit smaller than indirect forcing itself.
Spatial patterns are much different.

Wm-2

CurrentCurrent--PreindustPreindust..



Procedure:
• Use in-situ data and assess CCN closure, for typical 
assumptions on chemical composition taken in GCMs.

• Quantify CCN prediction error 

• Incorporate in global model and assess uncertainty in 

Cloud droplet number concentration (CDNC)

Aerosol indirect forcing

Autoconversion of cloudwater to rain

Determine regions where uncertainty is small; define 
regions where more in-situ constraints are needed.

Is CCN prediction theory Is CCN prediction theory ““good enoughgood enough””??



Two DMT CCN counters Two DMT CCN counters 
(Roberts and Nenes, AST, 2005;(Roberts and Nenes, AST, 2005;

Lance et al., AST, 2006)Lance et al., AST, 2006)

TSI SMPS, for size distributionTSI SMPS, for size distribution

Aerodyne AMS, for chemical Aerodyne AMS, for chemical 
compositioncomposition

2 weeks of aerosol and CCN data (0.2 2 weeks of aerosol and CCN data (0.2 -- 0.6 % 0.6 % supersaturationsupersaturation))

AIRMAP Thompson Farm siteAIRMAP Thompson Farm site
Located in Durham, New HampshireLocated in Durham, New Hampshire
Measurements done during ICARTT 2004Measurements done during ICARTT 2004
Air quality measurements are performed Air quality measurements are performed 
on air sampled from the top of a 40 foot on air sampled from the top of a 40 foot 
tower.tower.

InIn--situ Aerosol/CCN observationssitu Aerosol/CCN observations



CCN Measurements: “Traditional” Closure

From measured size 
distribution and 
chemical composition 
calculate CCN 
concentrations. 

20% overprediction
(average).

What does this 
prediction uncertainty 
mean for indirect 
forcing?100
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Medina et al., in review



CCN Prediction UncertaintyCCN Prediction Uncertainty

The prediction error decreases as 
supersaturation increases 

Error range: 10 - 60%

ICARTT datasetICARTT dataset
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Can we use ICARTT dataset 

to estimate CCN Uncertainty 

throughout the globe?

YES!
The degree of CCN closure is typical of polluted environments & larger than for 
pristine ones (Medina et al., in review). Using the dataset will provide an upper 

limit for CCN prediction and Indirect Forcing Uncertainty

YES!YES!
The degree of CCN closure is typical of polluted environments & larger than for 
pristine ones (Medina et al., in review). Using the dataset will provide an upper 

limit for CCN prediction and Indirect Forcing Uncertainty



Prediction Uncertainties

range: 5-50%

Larger CCN prediction uncertainty 
is found in regions where 

in-cloud smax is low

Global average: 28%

50%403020100

CCN PredictionCCN Prediction Indirect Forcing (W mIndirect Forcing (W m--22))

Larger uncertainty is 
predicted downwind of 

industrialized and biomass 
burning regions

range: 10-120%

Global average:

CCN Prediction uncertainty 
important only for some regions of 

the globe

It is more important source of 
uncertainty for autoconversion – not 

so important for forcing.



Improved precipitation parameterizations that consider microphysics 
exist, and are also used,

This is a step in the right direction, but the effects of spectral 
broadening (droplet size distribution) are not explicitly considered.

We seek an explicit link between aerosol, activation and subsequent 
coalescence at the "updraft" scale.

We are doing this now by predicting droplet size distribution in the 
updrafts that form clouds online in the GCM.

(Rotstayn, 1997)
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Parameterizing drizzle: how it’s done now



Two-moment schemes developed for small-scale models can be used 
instead

(e.g., Cohard and Pinty, 2000; R4 and R6 schemes of Liu & Daum)

Parameterizing drizzle: what we are working on

We have all the elements we need (dispersion, droplet size) for a 
comprehensive treatment of precipitation. Why not include it in the 
GCM?

Challenge: How do we obtain these parameters in the global model?

Solution: From the Nenes and Seinfeld Activation Parameterization

( )
( ) 16

3202

5.7105.07.3

4.010
16
1107.2

−

−−

−×

⎟
⎠
⎞

⎜
⎝
⎛ −××

−=
σ

ρ

σρ

c

vc

Pl

q

Dq
q&

spectral dispersion
average droplet size



Predict size distribution with 
Nenes and Seinfeld 
parameterization and cloud 
parcel model for adiabatic 
cases of CRYSTAL-FACE 
(cumulus) clouds. 

Use droplet number & size 
distribution to predict 
autoconversion rate.

Use in-situ data to calculate 
autoconversion as well. 

The parameterization (and 
parcel model) capture the 
spectral width for adiabatic 
clouds well. 

Is it always like this? No.

We can address this problem.
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Parameterizing drizzle: predicting droplet size in GCMs

Hsieh and Nenes, in prep.
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New cloud droplet formation parameterization
(Includes entrainment)

Why need a new parameterization?

• Current parameterizations are adiabatic. Clouds are generally not. 
• Droplet number predictions are good even for slightly diabatic conditions 

(although Nd can still be overestimated for strong entrainment).
• Nenes and Seinfeld can predict droplet size distribution, but they are too 

narrow (adiabatic), so autoconversion calculations would generally be “off”.
• Comparison of predicted size 

distribution “width” vs. liquid 
water content for non-adiabatic 
CRYSTAL-FACE (cumulus) clouds. 

• Parameterization and cloud parcel 
model agree great with each 
other, but not with the data (even 
though cloud droplet number is 
captured to within 5%!).

• An entraining parameterization 
would improve this because 
entrainment broadens the 
distribution. 

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

7.00E-06

0.00E+00 5.00E-04 1.00E-03 1.50E-03 2.00E-03

LWMR(kg/kg)

ε(
m
)

Parcel model
Parameterization
C11

D
ro

pl
et

 S
iz

e 
D

ro
pl

et
 S

iz
e 

St
.D

ev
St

.D
ev

. (
m

)
. (

m
)

Parcel modelParcel model
N&S parameterizationN&S parameterization

InIn--situ datasitu data



New cloud droplet formation parameterization
(Includes entrainment)
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The first parameterization of its kind (Barahona and Nenes, in prep).
Complex organics can be treated, same conceptual framework
(“population splitting”) as the adiabatic parameterization. 
Mixing is parameterized in terms of an entrainment rate.
Versions for lognormal and sectional aerosol developed.
Same CPU requirements as the adiabatic “version”.

We’ve looked at 4000 cases
Average error:10%

We plan to use CRYSTAL-FACE, 
CSTRIPE, ICARTT, MASE, 

TEXAS-AQS data to constrain 
the entrainment rate.

The predicted in-cloud droplet
size distribution will be evaluated 

with the same dataset.



THANK  YOU!THANK  YOU!



CIRPAS Twin Otter

ICARTT (2004)ICARTT (2004)
Constraining PropertiesConstraining Properties

of organicsof organics

Optimal closure Optimal closure 
if organics if organics 

have a have a 
solubility less solubility less 
than 1than 1 g kgg kg--11

This is consistent This is consistent 
with our CCN with our CCN 

measurements as measurements as 
well.well.-60
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Cloud optical depths are quite close.
There are local differences (sometimes large).

Nenes et al., in preparation

Current Day Simulation (annual average)Current Day Simulation (annual average)

MODISMODIS

Cloud optical depthsCloud optical depths

GISSGISS



Measuring CCN: a key source of data
Goal: generate supersaturation, expose CCN to it and count how 
many droplets form.

Our Method: Take a metallic cylinder, wet its walls internally. 
Cool one end, heat the other, and flow air through it.

The flow is supersaturated with water vapor at the centerline.
Constant supersaturation develops – great for counting CCN!
Supersaturation is controlled by P, flow rate, T gradient
CCN can be measured over a wide range of supersaturations

Wall saturated with H2O
Linear temperature gradient.

H2O diffuses more quickly 
than heat and arrives at 
centerline first.

centerline

wet wall

Roberts and Nenes, AS&T, 2005
Lance et al., AS&T (2006)



Roberts and Nenes, AS&T (2005); Lance et al., AS&T (2006)
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Cloud droplet 
concentration

FSSP, CAS
Aerosol number 
concentration

CPC
Aerosol size 
distribution

DMA, PCASP, 
APS

Aerosol composition
AMS, PILS

Updraft velocity

Evaluate cloud droplet formation theory and 
parameterizations with in-situ

Aerosol/cloud microphysical measurements.

In Cabin:
AMS
DMAs
CPCs
CCN Counter
PILS

CVI
CAS
PCASP
FSSP

Water vapor

Met 
Sensors

CIRPAS Twin Otter 
(www.cirpas.net)

photo: T.Vanreken

Are GCM parameterizations Are GCM parameterizations ““good enoughgood enough””??



CIRPAS Twin Otter

ICARTT (2004)ICARTT (2004)
Continental StratusContinental Stratus

Downwind of Downwind of 
power plants  over power plants  over 

Lake Erie and Lake Erie and 
South Ohio.South Ohio.

Parameterization Parameterization 
agrees with agrees with 

observed CDNCobserved CDNC

Cloud formation Cloud formation 
parameterizations parameterizations 

do a do a 
GOOD JOBGOOD JOB

Fountoukis et al., JGR, in review

Avg.Error: 
13.2 ± 11.6%
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Meskhidze et al.,JGR (2005)
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CIRPAS Twin Otter

CSTRIPE (2003)
Coastal Stratocumulus 

Parameterization 
agrees with 

observed CDNC

Gaussian PDF of 
updraft velocity 
is sufficient to 
capture CDNC

Average updraft 
captures equally 

well.

α~ 0.06
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Parameterization Parameterization 
agrees with agrees with 

observed CDNCobserved CDNC

Single updraft Single updraft 
sufficient to sufficient to 

describe CDNCdescribe CDNC

αα~ 0.03 ~ 0.03 –– 0.08 0.08 
within updraft within updraft 
uncertaintyuncertainty

CIRPAS Twin Otter

CRYSTALCRYSTAL--FACE (2002)FACE (2002)
Cumulus cloudsCumulus clouds



Current Day Simulation (annual average)Current Day Simulation (annual average)

Global average: 190 cm-3CCN @0.2% (cmCCN @0.2% (cm--33))
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