Climate Response to Aerosol Effects and Their Influence on Hydrological Cycle

Yi Ming

Geophysical Fluid Dynamics Laboratory

Scientific questions that motivate this study

•Forcings vs. Feedbacks

Can aerosol indirect effect (a feedback) hold up in coupled models?

•Amplification vs. Dampening How do model feedbacks shape climate response?

•Global vs. Regional

Are the responses to well-mixed greenhouse gases (WMGG) and to aerosols linearly additive?

A coupled atmosphere – mixed-layer ocean general circulation model

Model Perturbations

Aerosol direct effect (forcing)

-20. -10. -5.0 -3.0 -1.0 0.0 1.0 3.0 5.0 10. 20.

WMGG (forcing)

Aerosol indirect effect

(flux change)

-20105.0 -3.0 -1.0 0.0 1.0 3.0 5.0 10.								_			
	-20.	-10.	-5.0	-3.0	-1.0	0.0	1.0	3.0	5.0	10.	20

Aerosol direct effect	-0.57 W m ⁻²
Aerosol indirect effect	-1.7 W m ⁻²
WMGG	+2.3 W m ⁻²

Design of Experiments

Thermal Response: Surface Air Temperature (K)

Vertical Distribution of Thermal Response (K)

-6.0 -2.5 -1.0 -0.80 -0.60 -0.40 0.0 0.40 0.60 0.80 1.0 2.5 6.0

Radiation: TOA Clear-sky SW (W m⁻²)

Downward (incoming) is defined as positive

Surface Albedo (%)

Radiation: TOA Cloudy-sky SW (W m⁻²)

Clouds: Liquid Water Path (LWP) (mg m⁻²)

Clouds: Cloud Cover (%)

Radiation: Surface All-sky SW (W m⁻²)

Evaporation (mm day⁻¹)

Precipitation (mm day⁻¹)

-5.0 -2.0 -1.0 -0.50 -0.30 0.0 0.30 0.50 1.0 2.0 5.0

Conclusions

•Despite its nature of feedback, aerosol indirect effect is effective in cooling the climate (0.8 K m² W⁻¹ for aerosols and 1.2 K m² W⁻¹ for WMGG);

•Nonlinear aspects of the model response result mainly from the inherent nonlinearity in the surface albedo and cloud feedbacks;

•Aerosols affect the hydrological cycle not only by reducing surface SW flux but also by altering atmospheric circulation.

Radiation: TOA Clear-sky LW (W m⁻²)

Radiation: TOA Cloudy-sky LW (W m⁻²)

How is surface albedo formulated in the GCM?

