Philadelphia

Closing the BC Gap: Closing the BC Gap: Emissions? Optics? Emissions? Optics?

Washington, D.C.

Dorothy Koch: Columbia University/GISS Emissions: Tami Bond, Frank Dentener, Zig Klimont, John van Aardenne, Guido van der Werf AERONET: Stefan Kinne Richmond Model optics/radiation: Andy Lacis

Virginia Beach

100 km

Why examine BC absorption?

- Carbonaceous aerosols remain a major 'wild card' in understanding recent climate change, with highly uncertain direct, indirect and semi-direct effects
- Are GISS carbonaceous aerosol model regional biases relative to observations due to:

Emissions?

Optical property assumptions? Measurement errors?

• Sato *et al.* (PNAS, 2003) found that GISS and GOCART aerosol climatologies underestimated BC/OC absorption relative to AERONET by a factor of 2-4. These (older) GISS aerosols were therefore enhanced in the Hansen *et al.* climate simulations.

GISS model

• Aerosol mass simulation, external mixture

• Solubility: sulfate, sea salt, dust: fully soluble Energy BC, OC: soluble after aging Biomass burning BC, OC: fixed solubility

Aerosol Model Intercomparisons

- **VA Beach** 1995 Rn222, Pb210
- \bullet Cambridge, England Pb210, sulfate
- \bullet COSAM Halifax, Nova Scotia, sulfate, Pb210
- \bullet IPCC intercomparison, Hamburg, Germany, all aerosols
- \bullet AEROCOM I Paris, France
- AEROCOM II Ispra, Italy
- \bullet AEROCOM III New York, USA
- •AEROCOM IV Oslo, Norway
- AEROCOM V **VA Beach**, USA

Model comparison with BC surface concentrations

Model comparison with BC surface concentrations

Bond et al emissions inventory BC < observed in: Eastern US Europe Southeastern Asia

New Present-day Carbonaceous Emission Inventories!!

- •Energy-related emissions (1995):
- 1. Bond et al. (2004) (**AEROCOM**)
- 2. IIASA (Klimont, Amman et al)
- 3. EDGAR (van Aardenne et al)
- •Biomass Burning
- 1. GFED v1 1997-2001(**AEROCOM** 2000) 2. GFED v2 1997-2004

BC Energy-emissions

OC Energy-emissions

Biomass burning GFED comparison

Model comparison with BC surface concentrations

IIASA or EDGAR may improve bias in some locations, however regional biases persist

Model comparison with OC surface concentrations M model (ng. 1000 100 HASA/ODS Bond/obs EDGAR/obs 20.00 10.00 5.00 2.00 $1.5C$ 0.67 0.50 0.20 0.10 0.05
1000 GAR-Bond **Bond** -Bond 500 100 50 10 -10 -50 -100

500 1000 2000 5000 10000

100

50

 Ω

200

 -500 -1000

IIASA or EDGAR may improve bias in some locations, however regional biases persist

GISS model optics/radiation

- Aerosol mass simulation, external mixture
- Assumed effective radii: sea salt: 0.44, 1.7 μ m dust: 0.13,0.23, 0.42, 0.77, 1.39, 2.77, 5.54 μ m sulfate: 0.15 μ m OC: 0.2 μ m BC: 0.08 μ m

AOT, Angstrom Exponent

Model AOT: Too large in North America

and Europe Too small in Asia

Angstrom Exp: Particle sizes too small in western US

AOT composition

Model AOT: Excessive sulfate might explain AOT anomalies in North America

Europe and Asia biases fromcombination of sulfate, dust and organics??

BC is minor player…

Absorbing AOT (AAOT)

- AAOT is appealing because in regions where BC dominates over other absorbers (dust, OC), it provides a measure of BC amount
- $AAOT=(1-SSA)$ x $AOT = AOT AOT$ scattering
- SSA(=1-AAOT/AOT) is also sensitive to AOT

AAOT composition

We will focus on regions with BC AAOT >> dust AAOT

AAOT

AAOT has regional levels

AAOT

Model

North

Asia?

over-

AAOT seasonalities

Model biasesUS: over-estimate in winter

Europe and Asia: under-estimate in summer

Argentina: missing urban sources?

AAOT

Overall regional biases persist with different emissions

New BC emission estimates do not help fix model surface concentration or AAOT biases

Aerosol Effective Radius Assumptions

- AEROCOM Primary Particle r_{eff} :
	- Biomass and biofuel 0.095 μ m
	- Traffic 0.036 μ m
	- Industrial 1.66 μ m
- We have assumed BC $r_{\rm eff}$ = 0.08 μ m Now change to r_{eff} =0.06, 0.1 µm (At these sizes, absorption decreases as size increases)

AAOT $f(r_{\text{eff}})$

Changing BC effective radius in a logical direction does not help fix model AAOT bias

What can we learn from AAOT biases at other wavelengths?

If the bias is less at longer wavelengths then adding absorbing OM would help.

$\mathrm{AAOT} \ \mathrm{f}(\lambda)$

AAOT 550nm AAOT 880nm $M_{\rm H} = 1.2$ Medicine 1.1 $M_{\rm H} = 1.2$ Model

underestimate

is larger at

longer

wavelengths.

This suggests $\begin{bmatrix} 0.78 \\ 0.78 \\ 0.64 \end{bmatrix}$

This suggests $\begin{bmatrix} 0.77 \\ 0.64 \\ 0.64 \end{bmatrix}$

This suggests $\begin{bmatrix} 0.45 \\ 0.45 \end{bmatrix}$

OC is OC is **lacking.**

7.00

4.00

3.00 2.00

 -1.00

0.50

 0.25

 0.10

 0.00

15.00 4.00 3.00 2.00 1.25 0.75 0.50 0.25 0.10 0.00

Aerosol mixing effects on absorption

Aerosol mixture, coating of BC by sulfate, probably enhances absorption. This will be most important downwind of regions with large BC and sulfate emissions: SE Asia, Europe

It would be less helpful *within* these regions and in biomass burning regions.

And the model already overestimates absorption in remote regions.

Figure 23. Annual mean mass fraction (%) of sulfate on carbonaceous aerosol (sulfate mass on OM/BC relative to sulfate mass on OM/BC plus OM/BC mass) (a) at the surface and (b) in the middle to upper troposphere (536-187 hPa).

Closing the gap: Some ideas…

- 1. Particle structure evolution with age: Wood-burn particles transform from: fresh, fluffy, more absorbing **example 3** compact, less absorbing Such aging effects on model optics might help explain AAOT biases (under-estimates in Europe, Asia, biomass burning regions).
- 2. Emission of large (e.g. super-micron) particles near source regions would help explain the model surface concentration biases near source regions.

Conclusions

1. There are broad regional patterns of BC, both surface concentrations and AERONET τ_{abs} :

Asia > Europe, biomass burning regions > North America > remote NH > remote SH

- These patterns appear in spite of local variabilities due to urban locations, measurement uncertainties
- 2. Newest emission estimates hopefully improve our links from sources to climate effects; however these estimates do not greatly change our model biases relative to observations.
- 3. Our model underestimates BC in SE Asia, biomass burning regions, parts of Europe.
- 4. The bias is slightly greater at longer wavelengths, suggesting that the deficiency is in black, not organic carbon.

Conclusions, cont'd

- 5. Adding aerosol size information is not likely to help:
- Smaller particles in North America (where diesel sources dominate) would increase absorption there, but absorption is already too large.
- Larger particles in biomass burning and residential source regions would decrease absorption, where absorption is already too small.
- 6. Adding aerosol mixing would increase absorption downwind of SE Asia, Europe sources but would not help much close to source regions where biases are largest.
- **7. Perhaps wood burning and (Asian) coal burning are more absorbing than our current optical model assumes: particle structural or density effects?**
- 8. Emission estimates of coarse particles would improve surface concentration bias near source regions.
- 9. OMI: increased AAOT spatial coverage

Absorbing OM?

However this would mostly boost short-wave absorption(?)

