MISR Dust and Pollution Aerosol Air Mass Mapping from MISR Multi-Angle Imaging

Ralph Kahn Michael Garay Kevin Yau David Nelson John Martonchik David Diner Jet Propulsion Laboratory/ California Institute of Technology

Five Years of <u>MISR</u> Global Aerosol Products

Distinct Regional Aerosol Air Mass Types Identified Dust + Pollution -- UAE-2 Campaign MISR Data September 01, 2004 Orbit 25032 Path 162 Blocks 68-72 V16

UAE-2 Campaign MISR Data September 10, 2004 Orbit 25163 Path 161 Blocks 68-73 V16

Oregon Fire Sept 04 2003 Orbit 19753 Blks 53-55 MISR Aerosols V17, Heights V13 (no winds)

Oregon Fire Sept 04 2003 Orbit 19753 MISR Stereo Heights V13 (no winds)

Atmospheric stability derived from NCEP re-analysis

Oregon Fire Sept 04 2003 Orbit 19753 Detail of Patch 1

Saharan Dust Plumes

Scatter Plots Showing 579 MISR-AERONET Coincident AOT Events 32 sites, during 2001-2002; Stratified by Expected Aerosol Type

Overall:

- About 2/3 fall within 0.05 or 20% * AOT
- About 1/3 fall within 0.02 or 10% * AOT

Correlation Coeffs. > 0.8 in all categories except Dusty, which is > 0.72

From: Kahn, et al., JGR 2005

127 MISR- AERONET & 113 MODIS-AERONET Coincident AOT Comparisons Over Land; March, June, and September 2002

From: Abdou, et al., JGR 2005

Mid-Visible AOT Sensitivities Reported Currently

• MISR: 0.05 or 20% * AOT overall; *better over dark water* [Kahn et al., 2005]

MODIS: 0.05 or 20% * AOT over land
 0.03 or 5% * AOT over dark water [*Remer et al.* 2005]

Based on AERONET coincidences (cloud screened by *both* sensors)

--> For global, monthly AOT, AEROCOM uses MISR over land, MODIS over water

MISR - MODIS - AVHRR Five-Year Monthly, Global AOT Comparison

Based on Standard "Level 3" Gridded Products

From: Mike Mishchenko, AGU presentation, Fall 2005; used by permission

P1 - Surface or Atmosphere Effect? Forth Crete Sept 13 2003 Orbit 19898 Path 180 Block 62

TOA Nadir Reflectance Trace

- P1 Δ_refl ~ +0.005 [G, R, NIR]
 --> A "gray" TOA reflectance increase
- For the MISR ±60° cameras

 --> reflectance increase similar size, roughly fore-aft symmetric

Band-specific Simulations

- AERONET-retrieved aerosols
- Observed wind speed (3.6 m/s)
- $A_0(\lambda)$ as in each algorithm
- Known ~3% MI-MO Absolute Cal. Dif. Small numbers, but Systematic

$$\begin{split} MODIS_{Grn,NIR} \sim 10\% \ above \ nominal \ model \\ MISR_{Grn,NIR} \sim 15\% \ above \ nominal \ model \\ \Delta_{refl_{MISR-ARNT}}(P2,P3) \dashrightarrow \Delta_{AOT} \sim 0.01(G); \ 0.02 \ (R) \end{split}$$

From: Kahn et al., JGR, in preparation

MISR Nadir v. MODIS Reflectance Comparison Forth Crete Sept 13 2003 Orbit 19898 Path 180 Block 62

[Obs. - Calc.] Nadir TOA Reflectance

Forth Crete September 13 2003 [Observed - Calculated] Multi-angle TOA Reflectance

Water-leaving Reflectance $A_0(\lambda)$ Values Needed

(AERONET Atmosphere used)

	MISR Nadir P1	MODIS SW P1	MISR Nadir P2	MODIS SW P2	"Typical" Dark Water
Blue	0.0445	0.0280	0.0375	0.0220	0.0300
Green	<mark>0.0150</mark>	0.0127	0.0083	0.0062	<mark>0.0070</mark>
Red	0.0078	0.0069	0.0021	0.0015	0.0020
NIR	0.0072	0.0062	0.0023	0.0015	0.0007

Cases Shown

- AERONET & MISR-retrieved aerosols
 - $A_0(\lambda) = 0$ & Adjusted
 - Observed & Adjusted wind speed
 - AOT = AERONET & Adjusted

From: Kahn et al., JGR, in preparation

Ascension Island Feb 18 2005 Orbit 27510 Path 200 Blk. 97

Sampling and Level 3

- Clean Maritime aerosol air mass
- >60% AOT change across RH boundary
- Using *any one* of these AOT data sets to represent the entire region --> large errors

Ascension Island Jan 01 2005 Orbit 26811 Path 200 Blk. 97

Particle Properties Question

- Clean Maritime aerosol air mass
- No AOT decrease toward P1 & P2
- **SSA**: MODIS 0.92; MISR 0.84; ARNT 0.73
- MISR spectral AOT slope too steep
 --> particle sizes(?)

Ascension Island Jan 01 2005

Orbit 26811 Path 200 Blk. 97

MISR, MODIS, and AERONET Retrieved Particle Size Distributions

- ARNT spectral AOT independent of ARNT-retrieved size distribution
- Good ARNT spectral AOT fit with MODIS particles
- MISR V17 Standard Algorithm lacks spherical aerosol between 1 and 2.80 micron

--> Add 1.28, 1.5 and 2 micron aerosol back into MISR Standard algorithm

Conclusions (1)

Current State of MISR-MODIS Aerosol Capabilities

What we can do <u>routinely now</u>

- AOT over water and land with published sensitivities. But not yet in scattered <u>cloudy</u> regions, some <u>snow & ice</u> situations, <u>Case 2 water</u>
- M edium/large aerosol ratio; [MODIS; possibly dust from pollution from small particles]
- Spherical vs. Non-spherical [MISR; plates from grains from spheres at least in some cases]
- A erosol Layer Height [TOMS uv, GLAS, now CALIPSO]
- A erosol Plume Height to ~0.5 km [MISR; mainly forest fire, volcano, and dust source regions]
- F ire Occurrence [MODIS, AVHRR and other instruments w/mid-IR channels]

What we can do now in *individual cases*, & with available satellite data, could do routinely

- 3-5 size bins [MISR; need to complete the validation]
- 2-4 single-scattering albedo groupings [MISR; need to complete the validation]
- Aerosol amount & properties over Case 2 waters [MISR; algorithm development underway]

There is more to be said about other of the newer satellite instruments as well: POLDER, CERES, GLAS, AIRS, CALIPSO, (GLORY), etc.

Conclusions (2)

Suggestions for Large-scale, Long-term MISR & MODIS Aerosol Studies

using current products

- Aim for Targeted Regional rather than naïve global analyses if possible For applications that look at individual cases [e.g., source plumes, process studies, ...]
 --> Using 'Level 2' data can avoid many issues
- Use consistent, validated Versions of the Products
- Take seriously the caveats in **Product Quality Statements** [e.g., *Cloud Screening* limitations; *Validation Sensitivity* study results]
- Account for **Sampling**
 - -- Instrument Coverage
 - -- Especially for Severe, Short-lived Aerosol Event observations
 - -- Seasonal, or multi-year 'January' Aggregates may help
- Be aware: As field data are acquired, these **Products are Being Refined**

Conclusions (3)

Known Remaining Issues (each is under study by MISR/MODIS teams)

- 3% MISR-MODIS Absolute Calibration Difference [Surface albedo (*Lyapustin*) + AOT statistical ground truth]
- Surface Model Uncertainties
 - -- Assumed spectral water-leaving reflectances
 - [*Martonchik et al.* multi-angle $A_0(\lambda)$ retrieval]
 - -- Assumed near-ocean-surface **wind speed** [Adaptive glint width (*Fox et al.*; *Breon et al.*) or external source]
- Aerosol Properties used in Standard Retrieval Algorithms [Global comparisons and field campaigns (*Kahn et al.*)]
- Cloud Screening [Regional statistical analyses (*Diner et al.*; *Kaufman, Remer* et al.)]
- Spatial Sampling... [needs work]

The accuracy limits that can be achieved with these strategies remain to be explored

Satellite-related Topic for AeroCom:

Use of Satellite Data for Models --Validation, Initialization, Assimilation

- Information Content
- Quality
- Sampling
- How to Aggregate or incorporate satellite data products at Spatial and Temporal Scales needed by models