

Atmospheric aerosol research at the

U.K. Met Office Hadley Centre

Nicolas Bellouin, Jim Haywood, Colin Johnson, Andy Jones, Jamie Rae, Shekar Reddy, and Stephanie Woodward

5th AeroCom Workshop 17-19 October 2006 Virginia Beach

Contents

The presentation covers the following sections

- Aerosols in the improved HadGEM1
- Modelling
- Comparison against observations

- Observation-based estimates of the direct forcing
 - Differences between modelled and observation-derived direct forcing

Improved HadGEM1

- Hadley Centre Global Environmental Model vn1
- Based on the Unified Model vn6.1
 - Non-hydrostatic dynamical core
- Main improvements:
 - El Nino Southern Oscillation
 - Decreased North Hemis. summer warming bias
 - Improved aerosol representations
- Runs at N96L38 (1.25°x1.875°)
- 2 years/days for the coupled model on the NEC SX8
- No nudged or guided mode (own meteorology)
 © Crown copyright

Aerosol modelling: SU, BB, BC

Sulphate

- Emissions from oxidised DMS, anthropogenic SO₂ and volcanic SO₂ (resp. Spiro *et al.* [1992] and Kettle *et al.* [1999], Smith [2004], and Andres and Kasgnoc [1998])
- Oxidation of SO_2 by OH (dry) and H_2O_2 (wet)
- Aitken, accumulation and dissolved modes with 5 intermodal processes
- Hygroscopic growth from Fitzgerald [1975]

• Biomass-burning

- Emissions from AeroCom [van der Werf 2003] into a fresh mode
- Ageing into an aged mode with e-folding time of 6 hours
- Increase of mass upon ageing to represent condensation of VOCs
- Hygroscopic growth from Magi and Hobbs [2003]
- Black carbon
 - Emissions from Cooke et al. [1999] into a fresh mode
 - Ageing into an aged mode with e-folding time of 1 day

Aerosol modelling: SS, DU, SOA

- Sea salt
 - Number concentration from 10-m windspeed [O'Dowd 1997, 1999] for film and jet modes
 - Not transported
 - Hygroscopic growth from Fitzgerald [1975] and Tang et al. [1977]
- Mineral dust
 - Sources from friction velocity, soil moisture, and vegetation [Woodward 2001]
 - + 6 size bins from 0.03 to 30 μm
- Secondary organic aerosol
 - Non-interactive, monthly climatology from isoprene and terpene distributions (STOCHEM)
 - Size distributions from AERONET sites in Central Russia, refractive index from Lund-Myhre and Nielsen [2004], density from Bahreini *et al.* [2005]
 - Hygroscopic growth from Varutbangkul et al. [2006]

Aerosol burdens and optical depths

	Burden (mg m ⁻²)		Optical depth (0.55 μm) in 2000		
Sulphate	3.7 [SO ₄]	3.9 [1.8 – 5.3]	0.021	0.034 [0.015 – 0.051]	
Biomass burning	2.4	3.7	0.017	0.024	
Black carbon	0.5	[1.0 – 5.5]	0.003	[0.008 – 0.036]	
Sea salt	49.2	12.6 [4.8 – 25.8]	0.053	0.030 [0.020 – 0.067]	
Mineral dust	13.4	39.1 [8.8 – 57.8]	0.019	0.032 [0.012 – 0.054]	
Secondary organic	2.2	(n/a)	0.008	(n/a)	
Total incl. SOA Total excl. SOA	71.4 69.2	56 [34 – 92]	0.121 0.113	0.127 [0.097 – 0.151]	

Total optical depth and forcings

 $\tau_{0.55}$ (present-day): 0.121 $\tau_{0.55}$ (pre-industrial): 0.093 (-0.028)

Forcing w.r.t. pre-industrial conditions (1860): SW+LW Direct: -0.18 Wm⁻² SW+LW Direct and indirect: -1.35 Wm⁻²

"Dimming" (in clear sky)

Comparison against satellite retrievals

Comparison against AERONET climatology (1/2)

Comparison against AERONET climatology (2/2)

Observation-based estimates of the direct forcing

The accumulation-mode fraction

Bellouin et al. [2005]

© Crown copyright

Applied to MODIS (ocean):

AMF > 0.83 ± 0.05 Industrial or biomass (from location)

AMF in [0.35, 0.83] \pm 0.05 If TOMS detection, mixed dust and biomass If not, sea salt

AMF < 0.35 ± 0.05 If TOMS detection, mineral dust If not, sea salt

Over land, no AMF: replaced by anthropogenic fraction from AeroCom models Page 13

Anthropogenic aerosols over oceans

Observation-based and modelled direct forcings

Clear-sky DRF from AeroCom: -0.3 to -0.9 Wm⁻² [Schulz et al. 2006]

Bellouin et al. [2005]: "The DRF may be significantly larger than current model estimates".

But: - Overestimated AOD over land from MODIS (cf. MISR)?

- Are we talking about the same thing?

Defining the direct forcing: impact

Radiative perturbation (TOA): $\Delta F = F^{\uparrow}_{reference} - F^{\uparrow}_{perturbed}$

Over clear-sky oceans, shortwave only:

	Reference aerosols	Perturbed aerosols	MODIS		HadGEM	
			Δau	ΔF	Δau	ΔF
1	None	Present-day	0.143	-6.8	0.123	-4.1
1a	None	Anthrop.	0.028	-1.1	0.022	-0.6
2	Natural	Present-day	0.028	-0.8	0.022	-0.6
3	Pre-indus.	Present-day			0.018	-0.5

Bellouin et al. [2003] use (1), Bellouin et al. [2005] use (2), Schulz et al. [2006] use (3).

MODIS 1a v. 2: Large differences due to relative vertical profiles
MODIS 1a v. HadGEM: Optical depth, size distributions, optical properties, surface albedo, ... Which is most significant?

Summary and things to come

- Aerosols are behaving well in the improved HadGEM1
- Next addition to the model: Fossil-fuel organic carbon aerosols
- UK Chemistry and Aerosol module
 - Interactive chemistry (including stratosphere)
 - M7-like aerosols
- Bellouin *et al.* [2006/7] on comparing modelled and observation-based direct radiative forcings

Questions & Answers