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Reevaluation of Mineral aerosol radiative
forcings suggests a better agreement with

satellite and AERONET data
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Motivation: To understand effects of dust on climate
and how dust can influence weather forecasts we need
to have a correct representation of how absorbing dust is

Retrievals from satellite and from AERONET
sunphotometers indicate larger SSA than modellers
have assumed up to now

To understand these differences we recomputed
dust refractive index from the mineralogy of dust



3 satellite studies

Kaufman et al. (2001) studied two dusty situations off the coast of Africa
when optical depth reached 0.8 and 2.4 at 640 nm.

The imaginary part of the dust refractive index was varied for these two cases
until it fitted the radiances. The increase in apparent reflectance consistent
for the whole area of study suggested that dust is close to non-absorbing.

Moulin et al. (2001) needed to decrease the imaginarypart of mineral aerosol
refractive index to match that the spectral reflectance measured from the
Sea-viewing Wide Field-of-view Sensor (SeaWiIiFS) in dusty conditions

Haywood et al. (2003) looking at dust transported between Dakar (14.7 N, 17.
and Sal Island (16 N, 24 W) came up with the same conclusions.
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Uncertainties are £0.04 on the real part of the refractive index and 50% on
the imaginary part [Dubovik, 2002 and personal communication].
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Percentage (by VOL.) for the 6 minerals used to compute the refractive int

S1a S1b Sic
Central Hematite  High Hematite Low Hematite

Hematite 1.5 2.7 0.9
llite 31.5 30.3 32.1
Cuartz 14.0 14.0 14.0
Calcite 6.0 6.0 6.0
Kaolinite 24.0 24.0 24.0
[Montmorillonite 23.0 23.0 23.0
Total 100.0 100.0 100.0

From the mineralogical database of Claquin et al. (1999)
95% of the surfaces of arid and semi-arid areas have hematite content > 0.9%

50% have hematite content > 1.5%
95% >2.7%



2 hypothesis were tested for mixtures:
-A refractive index computed as a volume weighted average

-a hypothesis of a mixture of minerals that are spherules embeded in
hematite which allows to use the Maxwell-Garnett approximation
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Refractive index for the volume weighed average
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Refractive index for the Maxwell-Garnett approximation
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DUST SORTWAVE EFFECT (W.m-2)
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DUST EFFECT, shortwave and longwave (W.m-2)
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DUST shortwave EFFECT (W.m-2)
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DUST LONGWAVE EFFECT (W.m-2)
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Different TOA DUST EFFECT (W.m-2) for low, median high value of hematite, SW+LW
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Case Load (mg m e Load Total QD SW TOA LW TOA  SW+LW TOA
=Dt um 1<D<10um

SW+LW SRF

1.5% hematita internally mixes

S1 simulation 4.0 36,2 0.3 —E8 +0.29 .38 —0.82
(this stuch)

Reafractve index Pattarson-Volz
S2 simulation 4.0 36.2 0.3 +0.05 +0.30 +0.35 —1.44

(this stuchy)
Tegenetal. (199&) 14.7 2.6 0.02a —0.39 +0.53 +0.14

-1.82

Refractive index from a range of meaasuraments™

Woodward (2001) A MA MA -0.1a +0.23 +0.07 -0.82
Refractive index from dAlmeida (1991
My hre and Stordal (20017 14.7 2.5 0.025 051 +0.13 —0.48 MA

Same dust distribution as Tegen et al. (1928), same size distribution as Tegen and Lacis (129E)




Clear-Sky Mineral Dust Radiative Efficiency (Wm-2 t-1) Broadband Shortwave

only.
All values are averaged diurnally
TOA  Surface Hatio Heating"
[SRF/TOA]
Summer (JJA) over the Tropical Atlantic (15" N-25°N; 45° W-15" W)
Li et al. {2004} —35+3 —6543 1.9 +30+4
S1b: 0.92% Hematite —49 —65 1.3 +16
S51: 1.5% Hematite =47 —59 1.5 +22
Sic: 2.7% Hematite —45 —~76 [1.7 +32 |
S2: Patterson-Volz —29 —-88 2.0 +60

30 Sept. 2000 near Dakar (15N, 17W) values reported in Anderson et al. (2005)
The model gridbox averages over (16.85° W—-13.1"W and 13.75" N-16.25" N)

Haywood et al. (2003) —24 -38 1.6 +12
S1b: 0.9% Hematite —24 -48 2.0 +24
51: 1.5% Hematite —21 -51 2.4 +30
S1c: 2.79% Hematite -16 -57 2.6 +41
52: Patterson-Volz +4 -70 -17.5 +74

The column heating (W m‘z} is computed as the difference between TOA and surface fluxes.



Single scattering albedo (at 550nm)

Patterson —\VVolz External Mixture Internal Mixture
hem. Low/med./high Idem

0.89 0.90/0.94/0.96 0.95/0.97/0.98



Case SW LW SW+LW TOA SW+LW SRF

Internal mixtures (this study)

51: 1.5% hematite -0.68 +0.29 —-0.39 —0.92
S1b: 0.99% hematite -0.76 +0.29 -0.47 —0.81
Sic: 2.7% hematite -0.53 +0.29 —0.24 -1.11

External mixtures (this study)

53: 1.5% hematite -0.38 +0.32 —0.06 —1.01
S3b: 0.99% hematite -0.53 +0.32 —0.21 —0.80
S3c: 2.7% hematite -0.15 +0.32 +0.17 —-1.33

External mixtures (Myrhe and Stordal, 2001}

0.5% hematite —1.14 +0.42 -0.72 MA
1.0% hematite —-1.08 +0.41 —0.66 MNA

Sensitivity study with 2 modes (this study)
15t mode with MMD=2.5 um for and 2nd mode MMD=5.0 um at the source

S4: 1.5% hematite -078 +0.38 —0.40 —-1.13




What have we learned?

The combination of satellite observations, AERONET
retrieved refractive indices and mineralogy indicate that both SW and
SW+LW TOA radiative perturbation by dust are negative.

We estimated from sensitivity studies the TOA perturbation (SW+LW)
in the range from -0.17 to —0.47 W m-?

The radiative forcing efficiency derived from satellite and airborne
measurements could be used in AEROCOM to examine TOA, surface
aerosol radiative fluxes as well as atmospheric column heating

AEROCOM news:

AERONET retrieved refractive indices are showing
Higher values than in version 2. We will examine how if this changes
The conclusions presented here.



