

Aerosols in Troposphere and UTLS Simulated by a Sectional Aerosol Model

Pengfei Yu and Owen Brian Toon

ATOC, LASP, University of Colorado at Boulder

Oct.2, 2014, AeroCom Meeting

CARMA is a Sectional Aerosol Microphysics/ radiation model coupled with CAM5

CARMA is coupled with CAM5 by Charles Bardeen, ACD, NCAR

Compare sulfur chemistry in CAM5 aerosol models

CARMA	Default Modal	Bulk
H2SO4 + hv -> SO3 + H2O		
SO2 + hv -> SO + O		
SO3 + hv -> SO2 + O		
OCS + hv -> S + CO		
SO + hv -> S + O		
DMS + OH -> .5 * SO2 + .5 * HO2	DMS + OH -> SO2; DMS + OH -> .5 * SO2 + .5 * HO2	DMS + OH> a*SO2 + (1- a)*MSA
DMS + NO3 -> SO2 + HNO3	DMS + NO3 -> SO2 + HNO3	DMS + NO3> SO2
OCS + 0 -> SO + CO	SO2 + OH -> H2SO4	SO2 + OH + M> SO4 + M
OCS + OH -> SO2 + C + H		
S + OH -> SO + H		
S + O2 -> SO + O		
S + O3 -> SO + O2		
SO + OH -> SO2 + H		
SO + O2 -> SO2 + O		
SO + O3 -> SO2 + O2		
SO + NO2 -> SO2 + NO		
SO2 + OH + M -> HSO3 + M		
HSO3 + O2 -> SO3 + HO2		
SO3 + H2O -> H2SO4		
S(IV) + H2O2> SO4	S(IV) + H2O2> SO4	S(IV) + H2O2> SO4
S(IV) + O3> SO4	S(IV) + 03> SO4	S(IV) + O3> SO4

Sulfur Chemistry in CAM5/CARMA is developed by Mike Mills

CARMA has wider size range of aerosols than MAM

<u>POA includes biomass burning organics, anthropogenic organics, marine</u> <u>organics and biological particles.</u>

Model Captures Aerosol Optical Depth distribution

Global AOD Averaged from 2009 to 2011

Model captures 89% of AeRoNet AOD on average

Aeronet AOD average from 2009 to 2011

P1. CARMA Applied to UTLS:

- Aerosol composition in UTLS and above:
 Sulfate ≈ Organics @ UTLS
- Aerosol properties in UTLS and above
 Size distribution, Effective Radius
- ATAL, NATAL

Aerosol composition

In the UTLS, organics and sulfate dominate

Sulfate effective radius is between 0.1 to 0.18 um in 0.18 stratosphere 0.16 0.14 0.12

0.3

0.2

0.1

0.08

0

Mixed particles 0.06 effective radius at 0.04 UTLS is 0.16 um 0.02

CARMA predicts aerosol layer in UTLS over Asia and North America

CARMA extinction ratio has maximum in ATAL and NATAL

Asian Tropopause Aerosol Layer is mainly composed of POA and sulfate

NA "Tropopause" Aerosol Layer is mainly composed of SOA

ATAL is composed of POA; NATAL is composed of SOA

Strong gradient of organic mass fraction from Europe to India/ China in upper troposphere

Organics/Sulfate mass fraction at multiple pressure levels

Conclusions P1

- At UTLS, <u>sulfate mass ≈ organics mass</u>; above UTLS, sulfate dominates;
- Sulfate effective radius is roughly 0.1~0.18 um in stratosphere;
- Mixed particle effective radius is roughly 0.16 um in UTLS;
- CARMA does predict ATAL and NATAL during JJA;
- ATAL is mostly composed of organics and sulfate;
- NATAL is mostly composed of SOA, with sulfate as background;

P2. CARMA applied to SEAC⁴RS

• Aerosol compositions during SEAC⁴RS:

Sulfate, Organics, Black Carbon

Aerosol properties

size distribution, Optics, OC:SO₄-2

SEAC⁴RS - Southeast US: Aug-Sep, 2013

Imagery Date: 4/9/2013 38°29'16.48" N 101°20'05.16" W elev 3332 ft eye alt 2036.49 ml 🔘

Model captures SO₄/OC/BC in troposphere

Normalized Size distribution changes with altitude over U.S, mode width changes with composition

Sub-micron particles dominates optically, varies with altitude over U.S.

Size distribution over Sahara and Asia (July), dust dominates in super-micron modes

MODIS shows Rim Fire plumes, Aug.2013

Aug.26

Aug.28

Aug.30

CARMA shows transport of Rim fire smoke

BC column burden (kg/m2): Rim fires 2013

Conclusions P2

- CARMA can reproduce organics, black carbon and sulfate vertical distribution over U.S. within error bars;
- Particles size distribution varies with altitude;
- Sub-micron particles dominate optically in U.S.
- 2-degree climate model is not able to resolve aerosol intensity of smoke plumes;
- CARMA does show regional transport of smoke

Future work

1. Graduate

2.Add ammonium and nitrate3.Climate forcing (direct)4.Climate forcing (secondary)

Contact Info:

Pengfei Yu

pengfei.yu@colorado.edu

University of Colorado, Boulder

Thanks Charles Bardeen (NCAR) Ryan Neely (Leeds, NCAR) Mike Mills (NCAR) Christine Wiedinmyer (NCAR) Yellowstone (NSF&NCAR)

@ Houston, SEAC⁴RS, Sep.2013