A posteriori discrimination of aerosol and cloud from satellite retrievals

Gareth Thomas¹, Caroline Poulsen¹, Richard Siddans¹, Don Grainger², Adam Povey², Greg McGarragh²

¹ RAL Space, STFC Rutherford Appleton laboratory, UK ² Atmospheric, Oceanic and Planetary Physics, University of Oxford, UK

Facilities Council

Introduction

Aerosol and cloud have long existed as separate retrieval problems in the satellite remote sensing community, both relying on prior cloud masking to select appropriate pixels.

- Cloud masking is inherently subjective
- Generally, a substantial (and interesting!) fraction of the globe won't be classified as either cloud or aerosol
- Both cloud and aerosol can be retrieved with the same algorithm...

Aerosol CCI Cloud Flag/Cloud CCI Cloud Flag

An example AATSR cloud mask from cloud and aerosol CCI show disagreement in 21.6% of cases.

ORAC...

ORAC refers to a group of aerosol and cloud retrieval codes, all using the same basic algorithm.

- Used to stand for "Oxford-RAL Aerosol and Cloud", now "Optimal Retrieval of Aerosol and Cloud".
- Also known as "Community Cloud for Climate" CC4CL – in the cloud_cci project.
- Main variants:
 - Community cloud code
 - Aerosol code
 - IDL development version

See Adam Povey's poster

RAL Space

ORAC...

- All versions of ORAC are based on optimal estimation
 - All channels fitted by varying all retrieved parameters simultaneously.
 - Aerosol/cloud scattering and absorption modelled using DISORT to provide reflectance/transmission/emission of a scattering layer, which is placed within a "clear-sky" atmosphere (modelled with RTTOV)
- Retrieved parameters:
 Optical thickness, particle effective radius
 Layer height/pressure/temperature (with thermal channels)
 Surface reflectance and temperature (with thermal channels)
 Aerosol type/cloud phase determined a posteriori

See Thomas et al. (2009) in Kokhanovsky and de Leeuw, "Satellite remote sensing over land"

ORAC...Community cloud code

Code base developed for cloud_cci and applied to MODIS, AVHRR and (A)ATSR:

- Available via an online code repository for collaborative development – see http://proj.badc.rl.ac.uk/orac
- Fully coded in Fortran 2003

ORAC...Aerosol code

Code used for aerosol_cci and applied to (A)ATSR (and previously to SEVIRI):

- Main retrieval code in Fortran, with IDL preprocessing
- Provides a choice of two surface BRDF treatments allowing for multiview instruments to be utilised
- Can be configured to utilise thermal channels, producing a combined aerosol/surface temperature retrieval

ORAC... IDL development version

This is a test-bed code which is much more flexible, but much slower than the Fortran versions:

- Written in IDL, but utilises Fortran modules for radiative transfer (e.g. RTTOV)
- Provides BRDF surface, online radiative transfer, dual cloud-layer capability and the ability to retrieve trace gases (thus far SO₂ and H₂0).

80.00

60.00

50.00

40.00

30.00

20.00

0.00

A posteriori scene identification

- OE retrieval provides statistics on the quality of the fit
 - In particular the retrieval cost is directly related to the conditional probability of the retrieved state given the measurement (for a particular set of assumptions):

$$J = -2 \ln P(\mathbf{x}|\mathbf{y})$$

 Can we use this information to distinguish between cloud and aerosol (and different cloud/aerosol types)?

The $\chi 2$ test

• Measurement cost function:

 $J_{\rm m} = [{\bf y} - {\bf f}({\bf x})] {\bf S}_{\rm y}^{-1} [{\bf y} - {\bf f}({\bf x})]$

will be a random sample from a normal distribution with a standard deviation of 1, with degrees of freedom equal to the number of measurements, *m*.

- Thus, it should follow a χ^2 distribution with *m* degrees of freedom and each J_m value can thus provide a probability that the retrieval is consistent with the measurement
- Assumes that the covariance matrix, S_y, is an accurate representation of the uncertainty in the system and that the forward model, f(x), is a good representation of the physics of the measurement.
- Similar argument can be applied to the a priori cost.

RAL Space

Eyjafallajökull scene from 8 May 2010

- All SEVIRI channels fit
- Optical depth, effective radius, cloud top height and surface temperature retrieved
- Ice and liquid water cloud, ash and maritime aerosol used

Eyjafallajökull scene from 8 May 2010

- All SEVIRI channels fit
- Optical depth, effective radius, cloud top height and surface temperature retrieved
- Ice and liquid water cloud, ash and maritime aerosol used

Eyjafallajokull scene from 8 May 2010

- All SEVIRI channels fit
- Optical depth, effective radius, cloud top height and surface temperature retrieved
- Ice and liquid water cloud, ash and maritime aerosol used

Probability for aerosol

Eyjafallajokull scene from 8 May 2010

- All SEVIRI channels fit
- Optical depth, effective radius, cloud top height and surface temperature retrieved
- Ice and liquid water cloud, ash and maritime aerosol used

Probability for water cloud

Eyjafallajokull scene from 8 May 2010

- All SEVIRI channels fit
- Optical depth, effective radius, cloud top height and surface temperature retrieved
- Ice and liquid water cloud, ash and maritime aerosol used

Probability for ice cloud

Eyjafallajokull scene from 8 May 2010

- All SEVIRI channels fit
- Optical depth, effective radius, cloud top height and surface temperature retrieved
- Ice and liquid water cloud, ash and maritime aerosol used

Probability for volcanic ash

Type selection

Type with maximum probability

 \rightarrow equivalent to minimum cost

Type selection

Probability of maximum type

→ where the forward model is not appropriate, the probability is low

Type with a maximum probability, where confidence is at least 75%

RAL Space

Conclusions

- Optimal estimation provides a framework for the estimation of both aerosol and cloud properties within the same retrieval
- Retrieval is attempted for every pixel no "twilight zone" between definitely clear and definitely cloudy pixels
- χ2 statistic gives a quantitative measure of which assumed aerosol/cloud type best matches the observed radiances and how appropriate the forward model assumptions are

What's next for ORAC

- Simple numerical retrieval of three parameters from 3 measurements
 - Forward model is transform from Cartesian to polar coordinates
- Gaussian noise with standard deviation of 0.01 added to forward model

G. E. Thomas et al. - AEROCOM 2014 normalised by uncertainty

- Retrieved state and measurement both agree very well with theoretical distribution
- Retrieval works!

G. E. Thomas et al. - AEROCOM 2014 normalised by retrieved uncertainty

- Cumulative distribution of cost is very close to expected χ² distribution
- Note that the conditonal probability P(**x**|**y**) is pretty close to the χ² probability, but they are not the same

Assumed uncertainty 50% too small....

- Retrieval still works
- Even retrieved uncertainty is acceptable...

Assumed uncertainty 50% too small....

- χ² comparison breaks down
 - Too many high-cost retrievals
- However, the results are still qualitatively useful
 - Better states still provide higher χ^2 probabilities

