AEROCOM Intercomparison

Aerosol Effects on Cirrus Clouds (IND-ICE)

- CAM5
 - Xiaohong Liu, K. Zhang, Y. Wang (U. Wyoming & PNNL)
- CAM5-Michigan
 - C. Zhou, J. Penner (U. of Michigan)
- ECHAM6-HAM2
 - D. Neubauer, U. Lohmann (ETH, Zurich)
- **GEOS-5**
 - D. Barahona (NASA GSFC)

13rd AEROCOM Workshop, Steamboat Springs, CO September 29-October 2, 2014

Climatic effects of atmospheric aerosols

Aerosols strongly impact the Earth's energy budget through modifying the properties of clouds

IPCC AR4 2007

Global Mean Black Carbon Radiative Forcing from 1750 to 2005

Bond et al. (2013)

Global climate forcing of black carbon and co-emitted species in the industrial era (1750 - 2005)

Motivation

- Global climate models have started to include the treatment of ice nucleation linked to aerosols
 - Homogeneous nucleation on sulfate aerosol
 - Heterogeneous nucleation on dust and/or black carbon (BC)
 - Competition between homogeneous vs. heterogeneous
- The goal of this AeroCom intercomparison (IND3-ICE) is to more systematically assess the impact of aerosols on cirrus clouds and to estimate associated anthropogenic aerosol forcing.

Ice Nucleation in Cirrus 101

Multiple mechanisms for ice formation can be active.

AEROCOM Intercomparison (IND3-ICE)

- GCM simulations with configuration:
 - Prescribed SST
 - Nudged with reanslysis data (wind)
 - IPCC AR5 emissions
- Three sets of simulations (PD & PI)
 - **CTL:** Homogeneous and heterogeneous combined
 - Reference model
 - FIX: Fixed ice nucleation in cirrus clouds (Gettelman et al. 2012)
 - Fixed ice nucleation for T<-37 C° using a constant ice number of 383.6 /L, based on Cooper (1986) for T= -37C°
 - **HOM:** Homogeneous nucleation only
 - No heterogeneous ice nucleation in cirrus clouds when T<-37 C°

Ice Water Content

IWP = 17.3 g/m2 (CAM5), 18.9 (CAM5-Michigan), 10.2 g/m2 (ECHAM6), 26.9 (GEOS5)

Ice Crystal Number Concentration

90S

30S

60S

30N

60N

90N

30S

30N

60N

60S

Ice Number vs. Krämer Data

CTL & HOM

CAM5

ECHAM6

CAM5-Michigan

GEOS5

Ice Number Change (PD-PI)

CTL

CAM5

100

10

2

0

-0.1

-2

-10

ECHAM6

GEOS5

TOA Net Flux Change (PD-PI)

CTL

CAM5

CAM5-Michigan

Δnet (SW+LW) = -1.4 (CAM5), -1.35 (CAM5-M), -1.0 (ECHAM6), -1.4 W/m2 (GEOS5)

TOA Net LW Flux Change (PD-PI)

CTL

CAM5

CAM5-Michigan

ECHAM6

GEOS5

ΔLW = 0.67 (CAM5), 0.74 (CAM5-M), 0.86 (ECHAM6), 0.57 W/m2 (GEOS5)

TOA Net LW Flux Change (PD-PI)

FIX

CAM5

CAM5-Michigan

TOA Net LW Flux Change (PD-PI) CTL – FIX = AIE-cirrus

CAM5

CAM5-Michigan

ΔLW (cirrus) = 0.51 (CAM5), 0.62 (CAM5-M), 0.58 (ECHAM), 0.52 W/m2 (GEOS5)

TOA Net Flux Change (PD-PI) CTL – FIX = AIE-cirrus

CAM5

CAM5-Michigan

ΔSW+LW (cirrus) = 0.20 (CAM5), 0.13 (CAM5-M), 0.32 (ECHAM), 0.14 W/m2 (GEOS5)

Ice Number Change (CTL – HOM)

CAM5

CAM5-Michigan

GEOS5

Ice Water Content Change (CTL – HOM)

CAM5

b) All-Hom mg/m° 100 1 150 0.1 Pressure(hPa) 200 0.02 250 300 0 400 -0.02 500 -0.1 700 -1 850 1000 60S 30S 30N 0 60N

GEOS5

CAM5-Michigan

TOA Net LW Flux Change (CTL - HOM)

CAM5

CAM5-Michigan

ΔLW (cirrus thinning) = -0.28 (CAM5), -0.88 (CAM5-M), -0.87 (ECHAM), 0.19 W/m2 (GEOS5)

TOA Net Flux Change (CTL - HOM)

CAM5

CAM5-Michigan

ΔSW+LW (cirrus thinning)= -0.1 (CAM5), -0.44 (CAM5-M), -0.52 (ECHAM), 0.42 W/m2 (GEOS5)

Summary

- The global mean IWC differ by a factor of 2, and the difference in ice number concentration is larger (by ~ one order of magnitude) between CAM5, CAM5-Mich, ECHAM6 and GEOS5;
- Anthropogenic aerosol increases ice number concentration in cirrus clouds in most of global regions from pre-industrial to present-day time, with a longwave forcing of 0.5-0.6 W/m2, and net forcing of 0.1-0.3 W/m2 between CAM5, CAM5-Mich, ECHAM6 and GEOS5 (regional differences are larger)
- Cirrus thinning experiment (CTL HOM) reduces ice number concentration in cirrus clouds in most of global regions, with a net flux change of -0.1 (CAM5), -0.4 (CAM5-Mich), -0.5 (ECHAM6), and +0.4 W/m2 (GEOS5).

Future Plan

- Compare high frequency model output (3 hourly) with observation data;
- Write the results for publications.

Relative Contribution of Ni from HOM and HET, HET/(HOM+HET)

