

Simulation of Biomass Burning aerosol in HadGEM3

Ben Johnson¹, Jim Haywood^{1,2}, Justin Langridge¹, Kate Szpek¹,

Graham Mann³, Jane Mulcahy¹, Colin Johnson¹, Mohit Dalvi¹, Eoghan Darbyshire⁵ Will Morgan⁴, Hugh Coe⁴, Paulo Artaxo⁵, Joel Brito⁵, Karla Longo⁶, Saulo Freitas⁶

¹ Met Office, Exeter, UK

³ University of Leeds, UK

⁵ University of Sao Paulo, Brazil

² University of Exeter, UK

⁴ University of Manchester, UK

⁶ National Institute for Space Research (INPE), Brazil

AEROCOM, Steamboat Springs, Sept 2014

© Crown copyright Met Office

Introduction

- The Met Office Hadley Centre Earth System Model HadGEM3 – UKESM1
- UKCA & GLOMAP-mode aerosols
- SAMBBA field campaign
- Evaluation of biomass burning aerosols
- Sensitivity to modelling assumptions

The UK Earth System Model (UKEMS) Project headed by Colin Jones

- A collaboration between the Met Office Hadley Centre and the UK Natural Environment Research Council (NERC).
- A world-leading Earth System Model for CMIP6 and beyond.
- Built on HadGEM3 with several new components

Atmosphere = Based on HadGEM3 with UKCA (UK Chemistry & Aerosols)

Ocean = Nemo + MEDUSA (Biogeochemistry)

Land = JULES (includes TRIFFID vegetation, hydrology, soil and full carbon cycle)

Cryosphere = CICE (sea ice), BISICLES (ice sheets)

Core development team (of 16) funded equally by NERC/Met Office

GLOMAP-mode / UKCA-mode aerosol scheme

Aerosol scheme developed as part of UK Chemistry and Aerosol (UKCA) project for Met Office Unified Model (HadGEM3, UKESM, NWP).

Based on GLOMAP-bin resolved aerosol model but

with log-normal size modes of internally mixed aerosol:

Sulphate, black and organic carbon, sea salt.

Nitrate and dust will be added in near future.

Simulates full aerosol life cycle:

- Primary emissions (sulphate, BC/OC, sea-salt, dust)
- Secondary sulphate particle formation (nucleation)
- Coagulation (within modes, between modes).
- Condensation (sulphuric acid, bulk condensible organic)
- Cloud processing
- Dry deposition and sedimentation
- In-cloud and below-cloud scavenging

This will replace the CLASSIC aerosol scheme from HadGEM2 (externally mixed aerosol species with specified properties)

<u>GLOMAP-mode</u>: Manktelow et al (GRL, 2007), Woodhouse et al (Atmos Env, 2008; ACP, 2010), <u>references</u> Schmidt et al (ACP,2010), Mann et al, (GMD,2010), Mann et al (ACP, 2012)

Aerosol performance in HadGEM3: Annual mean AOD₅₅₀ comparisons

- Model simulations are from a development version of HadGEM3 targeted for use in UKESM
- UKCA-MODE aerosol scheme show improvements over CLASSIC aerosol scheme in some areas but degradation in other areas (e.g. not enough over Tropical Africa and S. America)
- BB emissions are from GFED3.1 for 2002-2011

Thanks to Jane Mulcahy and Nicolas Bellouin

Evaluation of Aerosol Optical Depth (AOD) over S. America during BB season

Sept monthly mean AOD₅₅₀ from UM and MODIS

	Mean: 0.306005						
0.05	0.1	0.2	0.4	0.8	1.6		

Mean: 0.170387 0.05 0.1 0.2 0.4 0.8 1.6

(c) UKCA-MODE: 4xBB

Upscaling of GFED emissions is required to gain agreement with MODIS AOD

Aerosol model
CLASSIC*
UKCA-MODE

Scaling ~ 2 ~4

• BB emissions were from GFED3.1 2002-2001.

SAMBBA field campaign

(South American Biomass Burning Analysis) – Sept/Oct 2012

Met Office

Evaluation of aerosol composition HadGEM3 vs SAMBBA ground obs

Met Office Column integrated aerosol burden

UKCA-mode OC (mg m⁻²)

UKCA-mode SU (mg m^{-2})

UKCA-mode BC mass frac

CLASSIC OC (mg m^{-2})

0.1 1 10 100

0.1 1 10 100

Mean: 0.0378413 0 0.05 0.1

- Aerosol in Amazonia dominated by organic carbon
- Models have lower BC mass & BC mass fraction than SAMBBA ground obs but UKCA-mode is closer to obs

Thanks to Joel Brito for ground obs

Aerosol composition

Met Office HadGEM3 vs SAMBBA FAAM obs

Western region

Eastern region

- FAAM averages show little change in composition from east west ?
- Models have lower BC mass fraction than FAAM obs but UKCA-mode is closer to FAAM obs
- Models have too great contribution from sulphate in Eastern region / too little BB aerosol (was only ¼ as much BC+OC there) due to limited GFED emissions in East region

Thanks to Eoghan Darbyshire for FAAM obs

Campaign mean aerosol size distributions vs modelled monthly mean: Western region

- Amplitude of SMPS and model curves were normalized to give equal peak concentrations as the PCASP
- Observations give consistent curve, except for SMPS d<0.1µm
- **UKCA-MODE** captures the size distribution over most of the observed size range. **CLASSIC** represents only the mid accumulation mode

Thanks to Eoghan Darbyshire for FAAM obs, Joel Brito for ground obs

AERONET size distributions

AERONET = 14-year September mean from Alta Floresta

 (b) AERONET vs SAMBBA FAAM observations, normalized by peak concentration.

 (c) AERONET vs monthly mean output, columnintegrated mean over Alta Floresta

Aerosol absorption

- Models show the moist values of SSA calculated from AAOD / AOD, monthly mean for September
- Minimum values are 0.93 for CLASSIC, 0.89 for UKCA-mode ٠
- AERONET, longer-term average at Alta Floresta for September = 0.92 ٠

^{*} Results are from an earlier simulation with UM vn7.3

Evaluation of optical properties at 550nm

Data source	K _{ext 550} (m²/g)	ω ₅₅₀	Å _{440 - 675}	9 ₅₅₀
SAMBBA FAAM Neph & PSAP (mean of all BB flights)	n/a	0.91	1.8	n/a
SAMBBA FAAM PCASP fine-mode logfit with RI = 1.5 + 0.02i*	4.28	0.89	2.0	0.61
AERONET, Alta Floresta, 1999 – 2012, September mean	3.6	0.92	1.7	0.64
CLASSIC** Total BB mixture (dry / moist)	5.01 / 7.73	0.91 / 0.94	2.3 / 2.0	0.58 / 0.64
UKCA** Fine-mode mix	3.83 / 8.25	0.85 / 0.92	2.1 / 1.9	0.58 / 0.64

*This is consistent with SCAR-B (Reid et al., 1998), or the assumptions of (i) 5% BC by mass, (ii) WCP (1986) refractive index, (iii) homogeneous / linear mixing rule

** Results are from an earlier simulation with UM vn7.3

Sensitivity tests

(preliminary tests for AEROCOM phase III BB emission experiment)

- 1. No BB emission
- 2. 1 x BB emission
- 3. 2 x BB emission

GFED3.1

- injection 0-3km
- 4. 5 x BB emission
- 5. 2 x BB emission

injection 0 – 100m.

6. 2 x BB emission

No plume scavenging*

7. 2 x BB emission Atmos nudged to reanalysis

*Plume scavenging removes aerosol from vertical mass flux in moist convective plumes. When this is OFF conventional scavenging occurs in proportion to convective precip rate.

Annual mean AOD_550nm from sensitivity simulations

No BB

Mean: 0.0954278 0.1 0.2 0.3 0.4 0.5 0

5xBB

Mean: 0.180157 \cap 0.1 0.2 0.3 0.4 0.5

1xBB

2xBB: Emitted 0-100m

2xBB

		М	ean	:	0.	12	55	67	7	
)	0.	1	0.2	2	0.	3	0.	4	0.	5
2x	BE	3:	NC)	pl	u	me	Э	sc	av

© Crown copyright Met Office

© Crown copyright Met Office

Aerosol vertical distribution

•FAAM aerosol scattering from nephelometer, corrected to ambient humidity using Kotchenruther & Hobbs (1998) [SCAR-B]

•Massive (4x) increase in surface concentration in SFC only run. Total column loading is about the same.

•Lack of plume scavenging leads to ~20% increase in column loading.

Impact of nudging atmosphere to reanalysis Annual mean AOD_550nm

Free-running atmosphere

Difference (impact of nudging)

(aoima — aoada)

Wind and temp nudged to ERA-40

Mean: 1.07391						
0.5	0.7	0.9	1.1	1.4	2	

© Crown copy

- HadGEM3 UKCA-MODE produces a reasonable simulation of BB aerosols AOD, composition, size distribution.
- UKCA-MODE aerosols show some improvements over CLASSIC, including:
 - broader and more realistic size distribution
 - More absorption of solar radiation
- BB emissions from GFED3.1 were doubled to get sufficient AOD (are the emissions too weak, or is the atmospheric model wrong).
- Necessary tuning factor depends to injection height, and aerosol removal rate (affected by many processes).

- Better constraints on solar absorption (BC fraction, RI, mixing state)
- AEROCOM BB emissions experiment (tuning of total BB emissions & injection height)
- Quantify effective radiative forcing BB aerosol
- Regional / global climate responses

Thank you for your attention!

© Crown copyright Met Office

New biomass burning emissions from GFED3.1

 GFED3.1 has lower emission than GFED2.1

 I recommend using mean emissions from 2002-2011 (MODIS era) for "present day" climate simulations / evaluation work.

Annual mean BB aerosol emissions

-1e-10

GFED3.1 2002-2011

Total: 19.2575 Tg[C]/yr

Difference (GFED3.1 – GFED2.1)

0

1e-10

GF	Έ	D2	
2	20	00	

AERONET optical properties

AERONET inversion products from Alta Floresta, monthly means 1999-2012.

•

 SSA can only be retrieved for AOD > 0.4.

Cross sections of carbonaceous aerosol mass mixing ratio

 UKCA-MODE and CLASSIC are similar except in the upper troposphere