Aerosol-Cloud-Precipitation Interactions: Some lessons from Large Eddy Simulations

Exploring observational constraints on the "lifetime effect"

Graham Feingold and Zach Lebo

NOAA Earth System Research Laboratory Boulder, Colorado

AEROCOM Workshop, Steamboat Springs, September 2014

Effect of Aerosol on Precipitation Formation

Aerosol reduces the ability of a warm cloud to generate precipitation (all else equal) (Gunn and Phillips 1957; Warner 1967)

Autoconversion vs. Accretion $r_{\rm{max}}$ **The accretion as Autoconversion values**

autoconversion rate is Autoconversion: cloud droplete intera Autoconversion: cloud droplets interact to form rain

$$
\left(\frac{\partial q_r}{\partial t}\right)_{\text{auto}} = 1350q_c^{2.4} \sqrt{N_c^{-1.79}} \qquad \text{depends on}
$$

depends on drop concentration and cloud water c

Accretion: rain drops collect cloud droplets to form rain

$$
\left(\frac{\partial q_r}{\partial t}\right)_{\text{accr}} = 67(q_c q_r)^{1.15} \qquad \qquad \text{no drop of}
$$

no drop concentration dependence

el is demonstrated in the scatterplot in Fig. 5a. \overline{a} N_c cloud drop # conc may also be used: *q^c* cloud water mixing ratio *qr* rain water mixing ratio

Khairoutdinov and Kogan 200 See also Berry, 1967, 1968 Berry and Reinhardt 1970s

Bulk parameters controlling the rate of rain formation

Rainrate *R* Liquid water path LWP Drop concentration N_d time available for collision-coalescence $t_c^{}$

Parameterization (empirically and theoretically based)

$$
R = C LWP^{\alpha} N_d^{-\beta}
$$

\n
$$
\alpha \sim 1.5
$$

\n
$$
\beta \sim 0.5
$$

time is not included in these parameterizations

Pawlowska et al. 2003; van Zanten et al. 2005; Kostinski 2008

Precipitation Susceptibility

$$
S_o = -\frac{d \ln R}{d \ln N_d}
$$

- S_0 aims to identify cloud conditions for which the aerosol may suppress precipitation
- S_o is related to GCM representation of "lifetime effects"
	- S_0 is equivalent to β in Autoconversion $\sim N_d^{-\beta}$ parameterizations
- *S^o* is a measure of the potential for suppression (not the actual suppression)

Finite range over which clouds exhibit significant precipitation suscepti

Finite range over which clouds exhibit significant precipitation susceptiation

CloudSat and MODIS Data: M. Lebsock et al.

Increasing Probability of Precipitation (POP) Increasing Probability of Precipitation (POP)

Sorooshian et al. 2009

Box model of collision-coalescence (bin microphysics); constant LWC Cloud contact time = simulation time

Brief contact with regions of high LWC has an inordinately strong effect on collision-coalescence

Feingold et al. 2013

Constraining Liquid Water Responses to changes in Aerosol (dL/dN)

 $L =$ Liquid Water Path

Minghuai Wang et al. 2012

POP = Probability of Precipitation

Can S_o or S_{pop} be used to constrain dL/dN?

Large Eddy Simulation (Stratocumulus)

WRF, 2-moment microphysics; $N_a = 25$, 50, 75, 100 mg⁻¹ + perturbed physics DYCOMS-II RF02

Three R thresholds: $T_h = 0.001$, 0.5, 5 mm day-1

Solid: mean Dashed: median Shaded: 10^{th} – 90^{th} percentiles

Can S_0 or S_{pop} be used to constrain dL/dN? **Large Eddy Simulation (Stratocumulus)**

Quantitative differences from GCM-based relationship

$$
\lambda = \frac{dlnL}{dlnN}
$$

Symbols: Different aerosol perturbations, Different model physics

Right axis:

$$
A'_{\circ} = A_{\circ} \left[1 + \frac{5}{2} \frac{d \ln L}{d \ln N} + \dots \right]
$$

$$
A_{f} = \frac{A'_{\circ}}{A_{\circ}} = \left[1 + \frac{10}{3} \lambda + \dots \right]
$$

 A_f = Albedo susceptibility enhancement factor due to λ (enhancement over Twomey albedo susceptibility)

Lebo and Feingold ACP 2014

Large Eddy Simulation (Trade-wind Cumulus)

RAMS (TAU bin microphysics); $N_a = 100$, 200, 300, 400, 500 cm⁻³ RICO (modified to increase rain)

Large Eddy Simulation (Cumulus)

λ becomes negative for large enough aerosol perturbations Evaporation-entrainment feedback reduces L

Lebo and Feingold ACP 201

Conclusions

- **Precipitation susceptibility:** S_0 or S_{pop} , dependence on LWP, *time*
- \blacksquare "Lifetime effect": $\lambda =$ dlnLWP/dlnN
- Examined use of satellite remote sensing to measure S_{pop} as a way to constrain \Box lifetime effect \Box
	- **-** LES produces λ -S_{pop} relationships with non-zero intercept
		- Even if S_{pop} is small, λ may not be
	- $\sim \lambda$ -S_{pop} relationship is both scale and regime dependent (SCu behaves differently from Cu)
	- Aggregated results based on regime-based large eddy modeling unlikely to equal GCM-based global average
	- Cautionary note regarding use of GCMs to explore underlying scaling

The Non-Linearity of Collision-Coalescence

or In Praise of Twomey

Cloud Contact time

Box model of collision-coalescence (bin microphysics) Cloud contact time = simulation time

Box model of collision-coalescence (bin microphysics)

- With increasing time, more of the domain is dominated by accretion - Auto/Accr contours roughly parallel to Z contours

Feingold et al. 2013

Box model of collision-coalescence (bin microphysics)

Feingold et al. 2013

Analysis of trajectories from Large Eddy Simulation of Cumulus

Alternative models: Trajectories from Large Eddy Simulation

Stratus, decoupled boundary layer 1000 800 H eight $[m]$ 600 400 200 20 40 60 80 100 120 \circ Time [min]

- Trajectories carry history that includes effects of
	- entrainment-mixing
	- cloud contact
	- extent of coupling with surface
- Different regimes have distinctly different trajectories

Feingold et al. 1998

Trajectory properties

Method

- Run microphysical model along set of 500 trajectories
- Parcels represent effects of
	- entrainment
	- activation
	- time varying updraft
	- collision-coalescence
- Each set of simulations is done for a range of aerosol conditions (25 < N_a < 1000 cm⁻³)
- Calculate $S_{\scriptscriptstyle\alpha}$ = -dlnR_{/dlnN_{d,i}
- Re $\int_{\text{LWC}(t)dt}$ ud residence time, LWC, and \mathcal{L} \mathcal{L} \mathcal{L} agrangian liquid water "path") $LWC(t)dt$

LES

- Bin by
- *Range of parcel conditions are captured*
- **Limitations:**
	- No mixing between parcels

$$
(R_i, N_{d,i}) = f(T_i, N_a)
$$

Ti = trajectory properties $T_i = \{t_i, x_i, y_i, z_i, u_i, v_i, w_i, P_i, \theta_i, r_{t,i}\}$

Feingold et al. 2013

 1.0

Time-limited Steady-state (unlimited time)

Qualitative behaviour is different because of contact time!

Conclusions Part I

- \blacksquare The increase in precipitation susceptibility S_0 with LWP appears to be a result of *limited time* available for collision-coalescence
	- Susceptibility changes as a function of lifecycle of cloud
	- Trajectories tend to have limited in-cloud residence time in well-mixed Scu or in trade cumulus: autoconversion is important
	- Eventually S_0 will decrease with LWP (accretion dominates autoconversion and/or in-cloud residence time is long enough)
- Challenge for GCMs:
	- don't resolve small-scale convection
	- many don't retain any memory of the precipitation process from one time step to the next

LES of Trade Cumulus (tracking individual clouds)

$$
I = \int R(t)dt = CLWP^{a}N_{d}^{-b}t_{c}^{g}
$$

\nFor cumulus:
\n $\alpha = 1.9$
\n $\beta = 0.9$
\n $\gamma = 1.2$
\n
\nModified RICO sounding to produce more rain

For cumulus: $\alpha = 1.9$ $\beta = 0.9$ $γ = 1.2$

Jiang et al. 2010 (JGR)

LES of Trade Cumulus (tracking individual clouds)

Jiang et al. 2010 (JGR)

LES of Trade Cumulus (tracking individual clouds)

Jiang et al. 2010 (JGR)

- S_c changes as cloud lifecycle progresses
- *R* response to r_e captures the essence of S_e (both in terms of qualitative shape and lifecycle dependence)

Duong, Sorooshian, Feingold 2011

Analysis of individual trade cumuli generated by LES

Influence of

- Quantifying *S^o* is difficult
	- Scale, aggregation

POP decreases with increasing aerosol - more so at higher water va

Lebsock, Stephens, Kummerow: CloudSat and MODIS data

Susceptibility in Climate Models

Used to diagnose balance of Autoconversion and Accretion

Gettelman et al. 2013