Intercomparison of iron in AEROCOM models

R. Wang, Y. Balkanski, A. Baker and L. Bopp

AEROSAT-AEROCOM meeting – Steamboat Springs, Sept. 30th 2014

Motivation

Critical Review

pubs.acs.org/est

Atmospheric Transport and Deposition of Mineral Dust to the Ocean: Implications for Research Needs

Michael Schulz,^{†,}* Joseph M. Prospero,[‡] Alex R. Baker,[§] Frank Dentener,[∥] Luisa Ickes,[⊥] Peter S. Liss,[§] Natalie M. Mahowald,[#] Slobodan Nickovic,[⊥] Carlos Pérez García-Pando, [∨] Sergio Rodríguez,[○] Manmohan Sarin,[♠] Ina Tegen,[¶] and Robert A. Duce^{\$}

- Bio-available iron can stimulate marine productivity when it is a limiting nutrient
- The influence of iron deposition on the carbon cycle has been so far poorly evaluated as several important factors have not been accounted. To progress in that direction we have prepared for an AEROCOM intercomparison by:
- 1/ Formulating a detailed combustion source for iron
- 2/ Using the published mineralogy from Journet et al. (2004)
- 3/ Assembling together many measurements from the litterature that cover all regions.

Emission of iron from combustion

$$E = a \cdot b \cdot c \cdot (1 - f) \cdot \sum_{x=1}^{4} J_x \cdot \left[\sum_{y=1}^{4} A_y \cdot (1 - R_{x,y})\right]$$

a: Fuel consumption

- b: Combustion rate
- c: fraction of Fe in fuel
- f: fraction of Fe retained in the residue ash
- J_x : fraction of Fe emitted in particle size x,
- A_{v} : fraction of a given type of control device,
- $R_{x,y}$: removing efficiency of the control device

Frequency distribution of emissions and particle sizes

Monte Carlo simulations **90% confidence interval** for total emissions: **2.24 – 11.52** around the average value of 5.1 Tg yr-1 for 1960-2007

Contribution of the different combustion sources to the 3 modes

Historical emissions of Fe in fine particles (PM1) and coarse (PM1-10 plus PM>10) particles from 1960 to 2010

Comparison with published estimates

	Years	Fossil fuels	Biomass	Dust
B71	1967	1.4 (all sizes)	·	
Luo08	1996	0.56 (PM ₁₋₁₀)	0.86 (PM ₁₋₁₀)	55 (using a Fe content of 3.5%)
		0.10 (PM ₁)	0.21 (PM ₁)	
Ito13	2001	0.44 (PM ₁₋₁₀)	0.92 (PM ₁₋₁₀)	74 (using a Fe content of 3.5%)
		0.07 (PM ₁)	0.23 (PM ₁)	
Our work	1967	2.32 (PM _{>10})		
		$0.64 (PM_{1-10})$		
		0.017 (PM ₁)		
	1996	$1.14 (PM_{1-10})$	0.31 (PM ₁₋₁₀)	
		0.036 (PM ₁)	0.012 (PM ₁)	
	2001	0.83 (PM ₁₋₁₀)	0.31 (PM ₁₋₁₀)	
		0.035 (PM ₁₋₁₀)	0.012 (PM ₁)	
	2007			35 (using a Fe content of 3.5%)
	2007			38 (using the mineralogy data)

Annual mean concentrations of Fe in the surface air.at 529 sites + 296 from cruises over the Atlantic (A. Baker)

Comparison of modelled versus measured atmospheric Fe concentrations

Statistics of the comparison by region

	Ν	\mathbf{F}_2	\mathbf{F}_{5}	NMB
Indian Ocean	61	30%	75%	-67.9%
Atlantic Ocean	224	64%	82%	15.1%
Pacific Ocean	126	52%	69%	-66.2%
South Ocean	47	43%	53%	-47.7%
East Asia	32	84%	100%	-2.1%
South Ame.	4	50%	75%	-78.2%
North Ame.	12	83%	100%	-40.3%
Mediterranean	23	61%	87%	24.4%
All regions	529	57%	77%	-14.2%

Relative importance of combustion sources to total iron atmospheric concrentrations

Modelled and observed Fe concentrations for different contributions from combustion sources.

G1: contribution > 50%; G2 > 30%; G3 > 15%; G4 < 15%

Distribution of the modelled (blue) and observed (black) Fe concentrations in the surface air over the Atlantic Ocean from 70°S to 60°

Scaling for dust source and combustion source encompasses 90% uncertainty

Seasonality in the iron surface concentrations at Bermuda and Barbados

Change in iron concentrations when accounting for the mineralogy of dust (compared to constant 3.5% iron content in dust)

Plot of the modelled and observed Fe concentrations at sites with different influences by using the new mineralogical data from Journet et al., 2014.

Contribution to total Fe deposition over oceans from different sources. 7.7 Tg yr-1 deposited over oceans of which 7% comes from combustion sources Coal Sol=20-25%

AEROCOM Iron Experiment

- EXP 1: assume iron represents 3.5% of dust mass
- EXP 2: based upon the mineralogy we provide, iron concentration and deposition will be compared to measurements by regions
- EXP 3: Effect of the combustion source
- EXP4: Compute the soluble iron with the best assumptions taken from your chemical model
- ... Analyze the processes that form the soluble iron (pH, mineralogy, other processing...)

Timeline for this activity (contact me if you want to co-lead it!)

- JAN 2015: Protocol will be distributed
- JUNE 2015 First serie of 4 experiments

• Present the results at the next AEROCOM meeting in Rome.