Study of aerosol direct and first indirect radiative effects with GEOS-Chem-APM

Fangqun Yu, Xiaoyan Ma, and Gan Luo

Atmospheric Sciences Research Center State University of New York at Albany

Funding support from NASA and NSF

AeroCom Workshop, September 10-13, 2012

Aerosol DRF and IRF depend on

Concentrations, Sizes, Compositions, Mixing States

Emission, Deposition, Nucleation, Growth, Coagulation, Scavenging, Aqueous Chemistry

which have large spatial and temporal variations.

Advanced Particle Microphysics (APM) model in GEOS-Chem

Turco et al., 1979; Jacobson et al., 1994; Yu and Turco, 1998; Yu and Luo, ACP, 2009

- Secondary particles (SP) : 40 bins
- Sea salt particles: 20 bins
- Dust: 15 bins
- **BC:** two log-normal modes (one for fossil fuel, the other for biomass burning)
- **Primary OC**: two log-normal modes
- Coating of primary particles by SP species tracked.

GEOS-Chem-APM

- Assimilated meteorology
- Full chemistry (NOx, SOx, VOCs, etc.)
- Full size-resolved microphysics

Formation and growth of atmospheric particles

Yu, ACP, 2011

data references: König-Langlo et al. (1998), Weller and Lampert (2008)

Modeling results are for surface laye

Simulated a6CN/IN Ext^eCôef. particle size distribution at Hyytiälä

Data acknowledgements: Prof Markku Kulmala, CREATE and EUSSAR data base.

Aerosol optical properties and radiative forcing based on GEOS-Chem-APM (Yu et al., 2012a,b; Ma et al., 2012) Optical properties

Core-shell model (Ackerman and Toon, 1981)

Radiative transfer

CCCMa 1D RT model (Li and Barker, 2002) – no McICA

AER column RRTMG model (Clough et al., 2005) – with McICA, all DRF and IRF results shown below are based on RRTMG Aerosol-cloud interaction

Cloud droplet formation (Jones et al., 1994; Abdul-Razzak and Ghan, 2002), Ice nucleation (Liu and Penner, 2005)

Comparison with AOD measurements

Model: All sky, annual average Vertical sigma coordinate

CALIOP: night time all sky, annual, Vertical asl coordinate

Summary

Based on GEOS-Chem-APM:

Aerosol all sky DRF:

-0. 31 W/m²

Aerosol first IRF (preliminary):

 -0.58 W/m^2

My thoughts on possible additional inter-comparisons:

- Pre-industry aerosol properties
- Model uncertainties (Sensitivities of DRF and IRF to a selected list of schemes/parameterizations)
 Model derived dCDN/dAOD, dCDN/dAI
 - for PD and PI