Southern Ocean AOD maximum: MISR, MAN and Aeronet perspectives

Marcin L. Witek

Jet Propulsion Laboratory California Institute of Technology

and Alexander Smirnov (MAN), Brent Holben (Aeronet)

© 2012. All rights reserved

Problem statement

There is a distinct maximum in aerosol optical depth (AOD) over Southern Oceans at around 55^o S latitude band.

It is observed in satellite retrievals (MISR, MODIS) and simulated in global aerosol transport models (related to enhanced sea salt emission due to strong surface winds)

Problem statement

AERONET Maritime Aerosol Network

Marine Aerosol Network (MAN) AOD observations from 2004 onward

 $dAOD = \pm 0.02$

Problem statement

Reliable information about

AOD (±0.02) but ...

Relatively small number of measurements

Direct observations might be biased towards cleaner conditions with lower wind speed

MAN is right vs. MISR & transport models are right

There are certain challenges with satellite retrievals and model simulations ...

Satellite retrievals

Cloud screening 1.

Original Aqua AOD

0.3

0.3

MODIS A0D (0.55 µm)

MODIS A0D (0.55 µm)

New Aqua AOD

Constraining surface conditions: 2. climatological wind speed, whitecap coverage, sunglint

D.5

D.5

0.4

0.4

0.7

0.7

n

0.3

MODIS A0D (0.55 µm)

0.4

0.7

Other... 3.

(a)

(b)

0.1

0.1

0.2

0.2

Multi-angle Imaging SpectroRadiometer (MISR)

Nine view angles at Earth surface: 70.5° forward to 70.5° backward

Nine 14-bit pushbroom cameras

275 m - 1.1 km sampling

Four spectral bands at each angle: 446, 558, 672, 866 nm

400-km swath: 9-day coverage at equator, 2-day at poles

7 minutes to observe each scene at all nine angles

Jet Propulsion Laboratory, California Institute of Technology

Collocation criteria

- Central point: closest MISR lat/lon region
- Central point not further than 17.6 × 3 km from MAN
- If central region NaN: average from 3x3 points
- Closest MAN time within ± 1h to MISR
- Exceptions made for MAN series separated by < 4h and having similar location (6 cases)
- MAN interpolated linearly in the log(AOD) vs. log(wavelength) space

211 MISR-MAN comparison points

AOD diff [MISR-MAN]

Investigating MISR-MAN biases

MISR-MAN differences depend on the number of successful retrievals within the 3×3 collocation area

The more retrievals the cleaner and less cloudy the scene

In the end we want to characterize each region and cloud fraction seems a good

Region characteristics in MISR retrievals: Retrieval Applicability Mask

0 = clear

- 1 = missing data
- 2 = poor quality
- 3 = glitter-contaminated
- 4 = topo. obscured
- 5 = topo. shadowed
- 6 = topo. complex
- 7 = cloudy
- 8 = cloud shadow
- 9 = not smooth
- 10 = not correlated
- 11 = region not suitable12 = -
- 13 = too bright
- 14 = cloudy other camera
- 15 = bright other camera 16 = -

Each region contains 16×16 subregions, each subregion is seen by 9 cameras:

16×16×9 = 2304 retrieval applicability masks

Correlation between different retrieval masks and MISR-MAN differences

0 = clear

- 1 = missing data
- 2 = poor quality
- 3 = glitter-contaminated
- 4 = topo. obscured
- 5 = topo. shadowed
- 6 = topo. complex
- 7 = cloudy
- 8 = cloud shadow
- 9 = not smooth
- 10 = not correlated
- 11 = region not suitable
- 12 = -
- 13 = too bright
- 14 = cloudy other camera
- 15 = bright other camera

16 = -

Best correlation with clear mask fraction, then cloudy, then glitter contaminated

We reduce the bias, but also exclude many comparison points (41 out of 211) Low statistics makes the analysis less reliable

Marine AERONET vs. MISR comparison

19 maritime Aeronet stations1195 collocated points370 collocated points with only central(the closest) MISR retrieval

- Correlations generally below 0.3
- Trends similar to MAN data
- Clear mask fraction seems
 good for correcting biases

- Combined MAN and Aeronet comparison points (~1400)
- Selecting clear mask fraction > 0.6 reduces the bias from 0.04 to 0.013
- Root mean square error is reduced by almost 0.02, to 0.05
- However, the number of retrievals is reduced by about 80%

Do we see bias reduction in low AOD scenarios?

Observations > 0.05 & < 0.2

11 year of MISR retrievals

Original V22 product

V22 product with clear mask fraction > 0.6

MISR 2001-2010 clear

MISR 2001-2010 all

"clear" – only regions with the clear mask fraction higher than 0.6

- The multiyear global average AOD is lower by 0.03
- Even after reducing MISR biases the 55°S AOD maximum is still present

Collocated MISR-MAN points over the Southern Ocean suggest MAN might be favoring lower AOD conditions

Summary

- MISR AOD retrievals are collocated with MAN and Aeronet observations (~200 and ~1200 points, respectively)
- MISR errors are inversely correlated with the clearness of retrieval region
- Error and bias corrections work for all AOD ranges
- Setting the clear mask fraction > 0.6 reduces the total average AOD by ~0.03
- MISR suggests there is still a local AOD maximum over the Southern Ocean
- Correction procedures eliminate too many valid retrievals
- Other retrieval issues are still evident and need to be corrected for