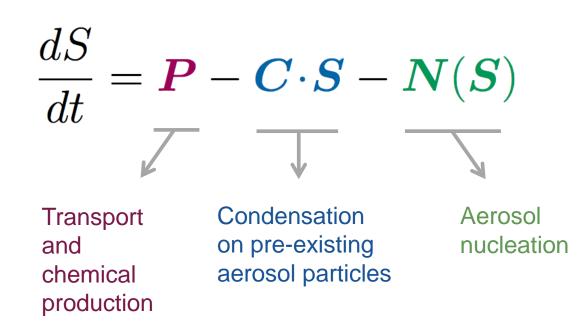
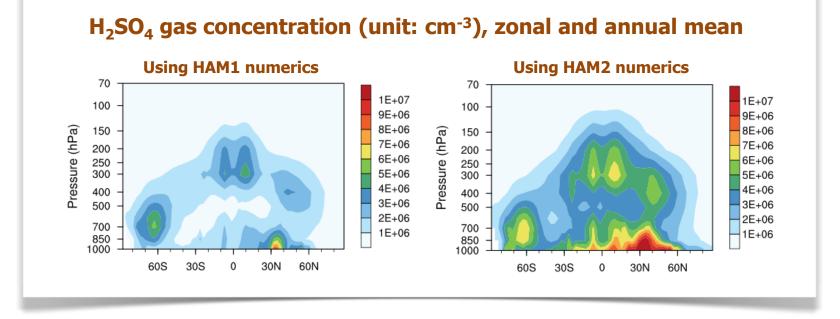


Proudly Operated by Battelle Since 1965


Numerical Issues Associated with Strongly Compensating Processes in Climate Models: an Example from ECHAM-HAM

Hui Wan^{1,2}, Phil Rasch¹, Kai Zhang^{1,2}, Jan Kazil^{3,4}, and Ruby Leung¹

¹ PNNL, Richland, WA
² MPI-M, Hamburg, Germany
³ CIRES, Boulder, CO
⁴ NOAA ESRL, Boulder, CO

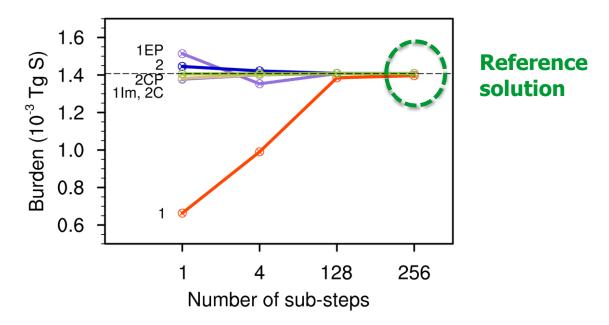


Proudly Operated by Baffelle Since 1965

Motivation

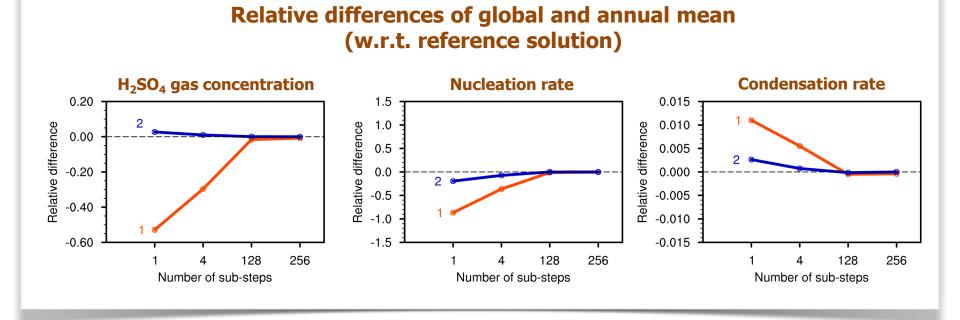
- New scheme outperforms old scheme in box model calculations (Kokkola et al., 2009, GMD)
- There is evidence of significant positive bias in H₂SO₄ gas in HAM2 (O'Donnell, 2011, HAMMOZ Workshop)

Does the new numerics really lead to model improvement? Should we revert to the old scheme?


Numerical test

Proudly Operated by Baffelle Since 1965

- Convergence test using sub-stepping
- Up to 256 sub-steps per each physics time step
- Using HAM1, HAM2 and a few other time stepping schemes



Old vs. new scheme in HAM

Proudly Operated by Baffelle Since 1965

From a numerical point of view, the numerical scheme in HAM2 is much more accurate than the old one!

Proudly Operated by Baffelle Since 1965

Source and sinks, zonal and annual mean (cm⁻¹ s⁻¹)

Production and condensation

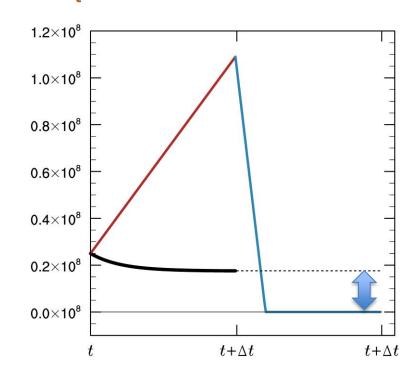
- are much stronger than nucleation
- nearly compensate each other

Proudly Operated by Baffelle Since 1965

Production-condensation equation

 $\frac{dS}{dt} = \boldsymbol{P} - \boldsymbol{C} \cdot \boldsymbol{S}$

Analytical solution


$$S_* = \left(S_t - \frac{P}{C}\right)e^{-C\Delta t} + \frac{P}{C}$$

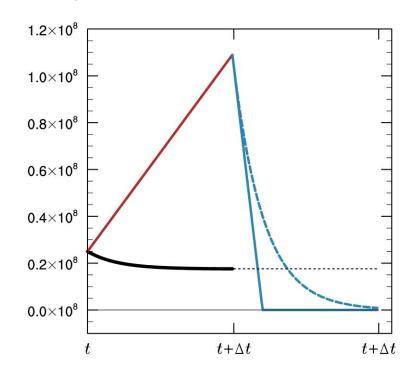
Old scheme

(Sequential split, explicit method)

$$S_* = S_t + \mathbf{P}\Delta t$$
$$S_{**} = S_* - \mathbf{C} \cdot \mathbf{S}_* \Delta t$$

East Asia near-surface level $P = 3.5 \times 10^5 \text{ cm}^{-1} \text{ s}^{-1}$ $C = 2 \times 10^{-2} \text{ s}^{-1}$ $S_t = 2.5 \times 10^{-7} \text{ cm}^{-3} \Delta t = 6 \text{ min}$

Proudly Operated by Baffelle Since 1965

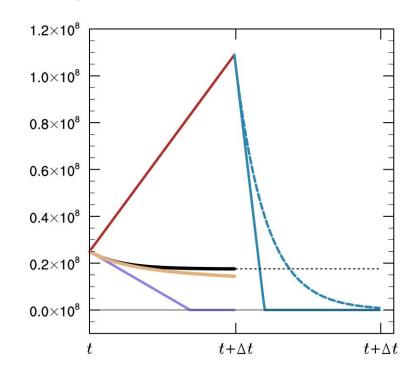

- Prod.-cond. equation $\frac{dS}{dt} = \mathbf{P} \mathbf{C} \cdot \mathbf{S}$
- Analytical solution

$$S_* = \left(S_t - \frac{P}{C}\right)e^{-C\Delta t} + \frac{P}{C}$$

Sequential split, analytical solution

 $S_* = S_t + \mathbf{P}\Delta t$ $S_{**} = S_* - \mathbf{C} \cdot \mathbf{S}_* \Delta t$ $S_{**} = S_* e^{-\mathbf{C}\Delta t}$

East Asia near-surface level $P = 3.5 \times 10^5 \text{ cm}^{-1} \text{ s}^{-1}$ $C = 2 \times 10^{-2} \text{ s}^{-1}$ $S_t = 2.5 \times 10^{-7} \text{ cm}^{-3} \Delta t = 6 \text{ min}$


Proudly Operated by Baffelle Since 1965

- Prod.-cond. equation $\frac{dS}{dt} = \mathbf{P} \mathbf{C} \cdot \mathbf{S}$
- Analytical solution

$$S_* = \left(S_t - \frac{P}{C}\right)e^{-C\Delta t} + \frac{P}{C}$$

- Parallel split, explicit method
- Implicit method

East Asia near-surface level $P = 3.5 \times 10^5 \text{ cm}^{-1} \text{ s}^{-1}$ $C = 2 \times 10^{-2} \text{ s}^{-1}$ $S_t = 2.5 \times 10^{-7} \text{ cm}^{-3} \Delta t = 6 \text{ min}$

Lessons learned

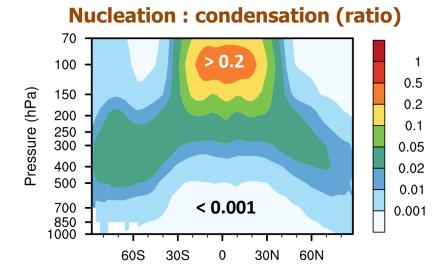
- When there are strongly compensating processes, sequential split + explicit scheme+ long time step is a dangerous combination!
- Numerical instability, no crash, but large error!

Our recommendation

- Analytical solution if possible
- Implicit method if affordable
- Process-based, sufficiently small time step

• Positive biases in H_2SO_4 gas in HAM2

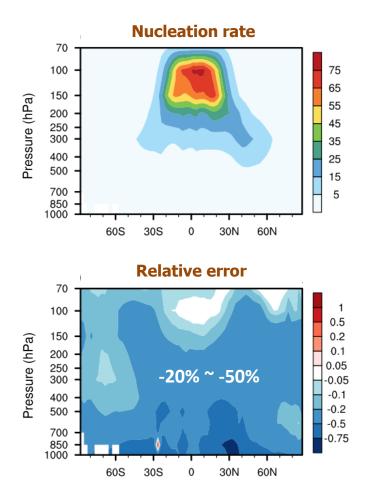
- Need further investigation
- Should not revert to the old numerics
- Possible biases in production and nucleation rate



Proudly Operated by Baffelle Since 1965

Aerosol nucleation in HAM2

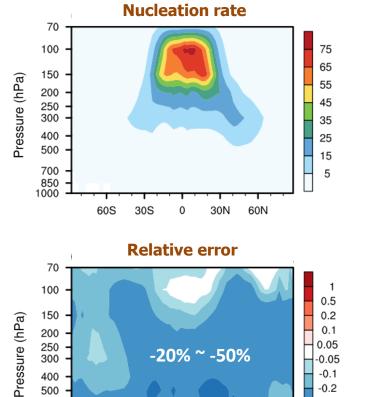
- Parameterization of Kazil and Lovejoy (2007)
- Sequential splitting with production and condensation
- Numerical correction (Kokkola et al., 2009)


$$S_{t+\Delta t} = S_* - \frac{N(S_*)}{1 + C\Delta t} \Delta t$$

Aerosol nucleation

Proudly Operated by Baffelle Since 1965

Using HAM2 numerics


$$S_{t+\Delta t} = S_* - \frac{N(S_*)}{1+C\Delta t}\Delta t$$

Aerosol nucleation

Using HAM2 numerics

400

500

700

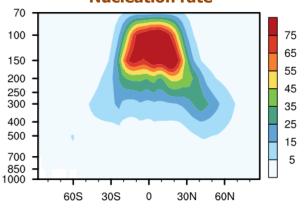
850 1000

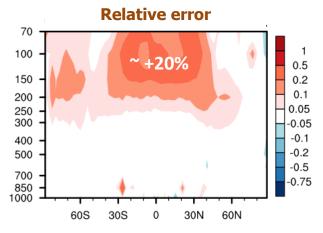
60S

30S

0

30N

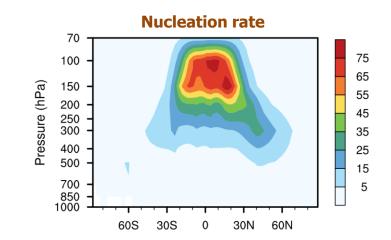

60N


-0.1

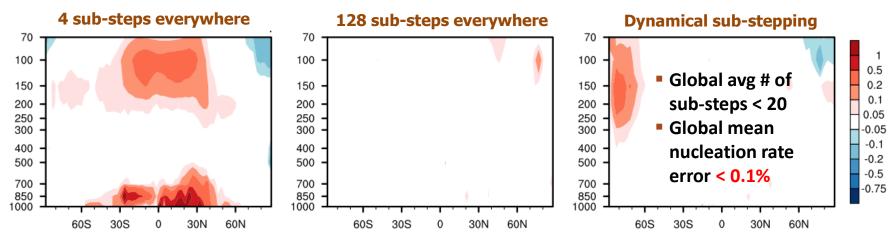
-0.2

-0.5

-0.75


13

Can we do better?


Simple explicit scheme

 $S_* = S_t + \Delta t \left(P - C \cdot S_t \right),$ $S_{t+\Delta t} = S_* - \Delta t N(S_*).$

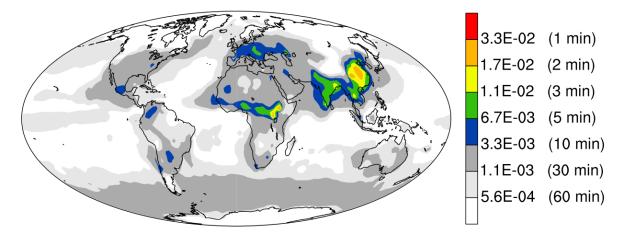
• Dynamically chosen time step $\Delta t < 1/C$

Relative error w.r.t. reference solution

Conclusions

- Rich experience in CTM and AQ community, but very limited attention (so far) by climate modelers
- The ubiquitous positive definite clipping can also cause problem

- Connecting parameterization schemes using a simply "USB-hub" may not work
- Caution is needed when treating compensating and competing processes


Proudly Operated by Battelle Since 1965

Condensation time scale

Proudly Operated by Battelle Since 1965

Near-surface condensation coefficient (unit: s⁻¹), January mean

