Direct aerosol radiative forcing based on combined A-Train observations and comparisons to IPCC-2007 results

Jens Redemann, Y. Shinozuka, M. Kacenelenbogen, J. Livingston, M. Vaughan, P. Russell, O. Torres, L. Remer

BAERI – SRI - NASA Langley - NASA Ames – NASA Goddard - UMBC

http://geo.arc.nasa.gov/AATS-website/ email: Jens.Redemann-1@nasa.gov

Outline

- Goal: To devise a new, methodology to derive direct aerosol radiative effects - ∆F_{aerosol}(z) including sensible uncertainty estimates, based on MODIS, OMI and CALIOP
- Motivation
- Philosophy and choices in multi-satellite-sensor (MOC) retrieval
- Methodology for combining CALIOP, OMI and MODIS data
- Checking consistency of input data
- → 12-month data set Jan. Dec. 2007
 - Impact of input data sets
 - Comparisons to AERONET
- ✤ Conclusions

1) Use instantaneously collocated A-Train observations (MODIS, OMI, CALIOP)

Goal: To use A-Train aerosol obs to constrain aerosol radiative properties to calculate $\Delta F_{aerosol}(z)$

- 1) Use instantaneously collocated A-Train observations (MODIS, OMI, CALIOP)
- 2) Make consistent retrieval from Level-2 aerosol data (eliminates the problem of collocating radiances and cloud-screening, but exposes the problem of different aerosol models)

Goal: To use A-Train aerosol obs to constrain aerosol radiative properties to calculate $\Delta F_{aerosol}(z)$

Constraints/Input:

- MODIS AOD (7/2 λ) + δ AOD
- OMI AAOD (388 nm) + δ AAOD
- CALIPSO ext (532, 1064 nm) + δ ext
- CALIPSO back (532 , 1064 nm) + $\delta back$

DATA set	Original parameter used
CALIPSO V3-01 (LARC DAAC)	YYYY-MM-DD, hhmm, Longitude, Latitude, Lidar_Data_Altitudes, Extinction_Coefficient_532&1064, Total_Backscatter_Coefficient_532&1064
MODIS Coll5 (LADSWEB)	Effective_Optical_Depth_Average_Ocean (AOD at 7 bands 0.47 - 2.13 μm) Corrected_Optical_Depth_Land (Corrected AOD at 0.47, 0.55, 0.66 μm)
OMAERO 2011V3 (Goddard DAAC)	AerosolOpticalThicknessMW (spectral AOD (best fit model) derived with Multi-Wavelength method using 14 bands between 342.5 and 483.5 nm) SingleScatteringAlbedoMW (Corresponding Spectral Single Scattering Albedo) AAOD (calculated as AOD*(1-SSA) from data above)
OMAERUV 2011V3	FinalAerosolOpticalDepth, FinalAerosolSingleScattAlb, AAOD, FinalAlgFlags, AerosolOpticalDepthVsHeight & AerosolSingleScattAlbVsHeight at 5 levels: 0, 1.5, 3.0, 6.0, 10.0km and 3 bands: 354, 388, 500nm.
AERONET L2.0 (AERONET website)	Station, long., lat., Date, Time, AOT (340-1640nm), Water(cm), AOTExt (total, fine, coarse at 441, 676, 870, 1020 nm), SSA, REFR & REFI, ASYM(total, fine, coarse), Inflection_Point, VolCon & EffRad & VolMedianRad & StdDev, Downward & Upward Flux(BOA&TOA), last_processing_date, %sphericity.
CCCM ReleaseB1 (Langley DAAC)	CERES SW TOA flux – up&down, CERES downw. SW surface flux – Model A, CERES net SW SFC flux – Model A, Clear area % coverage at subpixel res.

- 1) Use instantaneously collocated A-Train observations (MODIS, OMI, CALIOP)
- 2) Make consistent retrieval from Level-2 aerosol data (eliminates the problem of collocating radiances and cloud-screening, but exposes the problem of different aerosol models)
- 3) Use suborbital observations to guide choice of aerosol models

Aerosol models: Based on field observations, optimized to span observed range of ssa vs. EAE and ssa vs. lidar ratio

Goal: To use A-Train aerosol obs to constrain aerosol radiative properties to calculate $\Delta F_{aerosol}(z)$

Constraints/Input:

- MODIS AOD (7/2 λ) + δ AOD
- OMI AAOD (388 nm) + δ AAOD
- CALIPSO ext (532, 1064 nm) + δ ext
- CALIPSO back (532 , 1064 nm) + δ back

Issues to consider

- Differences in data quality land/ocean
- Impact of model assumptions
- Spatial variability
- Aerosols above & near clouds

- 1) Use instantaneously collocated A-Train observations (MODIS, OMI, CALIOP)
- 2) Make consistent retrieval from Level-2 aerosol data (eliminates the problem of collocating radiances and cloud-screening, but exposes the problem of different aerosol models)
- 3) Use suborbital observations to guide choice of aerosol models
- 4) Screen each data set with best knowledge of quality flags
- 5) Involve satellite sensor teams in production of multi-sensor retrieval

Latitudinal distribution of AOD differences between MODIS and CALIOP V3

Current choices in retrieval method: 1) Metric / error / cost function

$$\mathbf{X} = \left(\sum_{i} w_{i} \left(\frac{x_{i} - \hat{x}_{i}}{\delta \hat{x}_{i}}\right)^{2}\right)^{1/2}$$

- x_i : retrieved parameters
- \hat{x}_i : observables
- $\delta \hat{x}_i$: uncertainties in obs.
- W_i : weighting factors

2) 4 Observables

 $\begin{aligned} x_i &= AOD \ 550nm \ (\pm 0.03 \pm 5\%) \\ AOD \ 1240 \ nm \ (\pm 0.03 \pm 5\%) \\ AAOD \ 388 \ nm \ \pm (0.05 \pm 30\%) \\ \beta_{532} \ \pm (0.1 Mm^{-1} sr^{-1} \pm 30\%), \end{aligned}$

- MODIS
- OMI
- CALIOP
- 3) Minimize X and select the top 3% of solutions that meet $|x_i \hat{x}_i| \le \delta \hat{x}_i$ for all i

- 1) Use instantaneously collocated A-Train observations (MODIS, OMI, CALIOP)
- 2) Make consistent retrieval from Level-2 aerosol data (eliminates the problem of collocating radiances and cloud-screening, but exposes the problem of different aerosol models)
- 3) Use suborbital observations to guide choice of aerosol models
- 4) Screen each data set with best knowledge of quality flags
- 5) Involve satellite sensor teams in production of multi-sensor retrieval
- 6) Use CALIOP backscatter profiles, instead of extinction (Wandinger et al., 2010, Tesche et al., in prep., Redemann et al., 2002)
- 7) Provide uncertainty estimates based on range of aerosol models that are consistent with satellite measurements

Goal: To use A-Train aerosol obs to constrain aerosol radiative properties to calculate $\Delta F_{aerosol}(z)$

- 1) Use instantaneously collocated A-Train observations (MODIS, OMI, CALIOP)
- 2) Make consistent retrieval from Level-2 aerosol data (eliminates the problem of collocating radiances and cloud-screening, but exposes the problem of different aerosol models)
- 3) Use suborbital observations to guide choice of aerosol models
- 4) Screen each data set with best knowledge of quality flags
- 5) Involve satellite sensor teams in production of multi-sensor retrieval
- 6) Use CALIOP backscatter profiles, instead of extinction (Wandinger et al., 2010, Tesche et al., in prep., Redemann et al., 2002)
- 7) Provide uncertainty estimates based on range of aerosol models that are consistent with satellite measurements
- 8) Test representativeness of MOC retrieval inputs
- 9) Use CALIOP layer heights to constrain OMAERUV AAOD retrievals

Consistency/Sampling issues: Choice of OMI data

ssa 380nm

ssa 380nm

OMAERO data collocated with MODIS and CALIOP is a reasonable representation of global OMAERO over ocean OMAERUV data collocated with MODIS and CALIOP is a poor representation of global OMAERUV over ocean

January,2007

OMAERO data collocated with MODIS and CALIOP is a reasonable representation of global OMAERO over ocean

OMAERUV data collocated with MODIS and CALIOP is a poor representation of global OMAERUV over ocean

- 1) Use instantaneously collocated A-Train observations (MODIS, OMI, CALIOP)
- 2) Make consistent retrieval from Level-2 aerosol data (eliminates the problem of collocating radiances and cloud-screening, but exposes the problem of different aerosol models)
- 3) Use suborbital observations to guide choice of aerosol models
- 4) Screen each data set with best knowledge of quality flags
- 5) Involve satellite sensor teams in production of multi-sensor retrieval
- 6) Use CALIOP backscatter profiles, instead of extinction (Wandinger et al., 2010, Tesche et al., in prep., Redemann et al., 2002)
- 7) Provide uncertainty estimates based on range of aerosol models that are consistent with satellite measurements
- 8) Test representativeness of MOC retrieval inputs
- 9) Use CALIOP layer heights to constrain OMAERUV AAOD retrievals
- 10) Test multi-sensor retrievals against AERONET and field obs

Goal: To use A-Train aerosol obs to constrain aerosol radiative properties to calculate $\Delta F_{aerosol}(z)$

MOC retrievals vs. AERONET (V2.0) Ocean (OMAERO)

30 20120829T220249, 2007q_MOQA123_OO388SSA_CScrnd RMS = 0.09, Mean = 0.03, STD = 0.09 Frequency 20 10 0.15 -0.1 -0.05 0 0.05 0.1 0.15 Input - AERONET 441.0 nm SSA, n = 244 0.15 -0.15 0.2 25 RMS = 0.07, Mean = -0.01, STD = 0.07 20 Frequency 15 10 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 Output - AERONET 441.0 nm SSA, n = 224 0.15 0.2 -0.15

No bias in retrieved ssa, although small positive bias existed in the input data

MOC retrievals vs. AERONET (V2.0) Land (OMAERUV)

Negative bias in retrieved AOD is increased from input data

No bias in retrieved ssa, although positive bias existed in the input data

AOD and SSA retrievals from MODIS – OMI - CALIPSO

AOD and SSA retrievals from MODIS – OMI - CALIPSO

24h avg direct radiative forcing from MODIS – OMI - CALIPSO

Seasonal clear-sky DARF results at TOA and SFC from models and observations [W/m²] after CCSP, adapted from Yu et al. 2006.

Products	DJF		MAM		JJA		SON		ANN	
	TOA	SFC								
<u>Ocean</u>										
Observations (11) - Median	-5.5	-8.1	-5.7	-9.3	-5.5	-9.5	-5.4	-8.8	-5.5	-8.8
Our study - preliminary	-4.6	-9.5	-4.7	-10.2	-4.7	-8.6	-4.9	-9.7	-4.8	-9.8
Observations - error	0.23	0.56	0.2	0.85	0.29	0.94	0.26	0.78	0.21	0.67
Models (5) - Median	-3.3	-4.1	-3.5	-4.6	-3.5	-4.9	-3.8	-5.4	-3.5	-4.8
Models - error	0.61	0.66	0.66	0.92	0.67	0.91	0.68	0.81	0.64	0.8
Models/Observations	0.6	0.51	0.61	0.5	0.64	0.52	0.7	0.61	0.64	0.55
Land										
Observations (4) - Median	-3.7	-8.1	-5.1	-13	-5.8	-14.8	-4.7	-10.8	-4.9	-11.7
Our study - preliminary	-1.5	-10.6	-1.7	-11.5	-1.8	-11.8	-2.5	-12.1	-2.0	-11.8
Observations - error	0.17	0.49	0.26	0.74	0.31	0.85	0.27	0.75	0.26	0.7
Models (5) - Median	-1.6	-5.4	-3.2	-7.9	-3.6	-9.3	-2.5	-6.7	-2.8	-7.2
Models - error	0.42	0.51	0.65	1.22	0.8	1.37	0.62	0.79	0.59	0.93
Models/Observations	0.43	0.67	0.63	0.61	0.62	0.63	0.53	0.62	0.58	0.62

Seasonal clear-sky DARF results at TOA and SFC from models and observations [W/m²] after CCSP, adapted from Yu et al. 2006.

Products	DJF		MAM		JJA		SON		ANN	
	TOA	SFC	ΤΟΑ	SFC	TOA	SFC	TOA	SFC	TOA	SFC
<u>Ocean</u>										
Observations (11) - Median	-5.5	-8.1	-5.7	-9.3	-5.5	-9.5	-5.4	-8.8	-5.5	-8.8
Our study - preliminary	-4.6	-9.5	-4.7	-10.2	-4.7	-8.6	-4.9	-9.7	-4.8	-9.8
Observations - error	0.23	0.56	0.2	0.85	0.29	0.94	0.26	0.78	0.21	0.67
Models (5) - Median	-3.3	-4.1	-3.5	-4.6	-3.5	-4.9	-3.8	-5.4	-3.5	-4.8
Models - error	0.61	0.66	0.66	0.92	0.67	0.91	0.68	0.81	0.64	0.8
Models/Observations	0.6	0.51	0.61	0.5	0.64	0.52	0.7	0.61	0.64	0.55
Land										
Observations (4) - Median	-3.7	-8.1	-5.1	-13	-5.8	-14.8	-4.7	-10.8	-4.9	-11.7
Our study - preliminary	-1.5	-10.6	-1.7	-11.5	-1.8	-11.8	-2.5	-12.1	-2.0	-11.8
Observations - error	0.17	0.49	0.26	0.74	0.31	0.85	0.27	0.75	0.26	0.7
Models (5) - Median	-1.6	-5.4	-3.2	-7.9	-3.6	-9.3	-2.5	-6.7	-2.8	-7.2
Models - error	0.42	0.51	0.65	1.22	0.8	1.37	0.62	0.79	0.59	0.93
Models/Observations	0.43	0.67	0.63	0.61	0.62	0.63	0.53	0.62	0.58	0.62

Conclusions – what this data set is and is not

This data set:

- Is intended to lead to a PURELY observational estimate of DARF(z)
- Contains 12 months (2007) of aerosol extinction, ssa and g as f(t, lat, long, λ , z)
- Is based on instantaneously collocated level 2 MODIS AOD dark target retrievals at 2λ , OMI AAOD at 388nm, and CALIOP aerosol backscatter at 532nm
- Is based on quality-screened MODIS, OMI and CALIOP data
- Is based on aerosol models that are supported by suborbital observations
- Uses OMAERUV over land and OMAERO over ocean (representativeness)
- Agrees better with AERONET in terms of ssa(441nm) than input OMI data
- Uses CALIOP layer heights to constrain OMAERUV AAOD
- Provides uncertainty estimates based on range of aerosol models that are consistent with observation within their uncertainties
- Can be used to calculate clear-sky, direct, aerosol radiative forcing that compares favorably with previous observationally-based estimates and better with model based estimates over ocean at TOA

This data set:

- Is not based on passive sensor radiances
- Does not utilize MODIS DB data (yet)
- Does not cover all of the available collocated MODIS, OMI, CALIOP data (June 2006-Dec. 2008) (yet)
- Does not provide aerosol type from Mahalanobis cluster analysis (yet)

Conclusions – what this data set is and is not

So, is this useful to AeroCom? If so, in what format? Spectral aerosol radiative properties or radiative fluxes?

