The Use of Satellite-Measured Aerosol Optical Depth to Constrain Biomass Burning Emissions Source Strength in the Global Model GOCART

> Mariya Petrenko (NASA GSFC, formerly Purdue University)

> > Ralph Kahn, Mian Chin (NASA GSFC) Harshvardhan (Purdue University)

11th AeroCom Workshop. Seattle, WA, USA 13 September, 2012

Purpose of this study: Constrain BB emissions source strength

- 2
- BB emissions in aerosol models are supplied by external emission inventories.
- Many BB emission inventories have been developed
- Estimated amounts of BB emissions are different in different inventories

Satellite observations are crucial to validate emissions on a global scale

Satellite snapshot provides instantaneous constraint on a source strength

MODIS = Moderate Resolution Imaging Spectroradiometer on NASA's Terra and Aqua satellites

Presented results have been published Petrenko et al., 2012, J. Geophys. Res., doi:10.1029/2012JD017870

Motivation & Review of BB emission estimates

- Estimating BB emissions (2 approaches)
- Comparison of emission options and their individual components
- Evaluating BB emission options by comparing at tests of emission options GOCART model output with satellite observations
- Quantitative relationship between BB aerosol emissions and aerosol optical depth (AOD)

Implications for model parameterization
 Future work towards improving BB emissions for global models

Estimating BB emissions: 1. Burned area-based approach

Effective fuel load (a.k.a. "fuel consumption") $M_{i} = A * B * C * f_{i}$

Dry Mass burned (DM)

 M_i – mass of emitted gas/aerosol species i (g)

A - burned area (m²)

 $B - fuel density (kg/m^2)$

C – combustion completeness (unitless fraction)

 F_i - species-specific emission factor; $(g_i / kgDM);$ $i = e.g., BC, OC, SO_2$

4

Method adapted from Seiler and Crutzen (1979 in Climatic Change)

Burned area estimates for 2006

- □ Higher Leaf Area Index (trees) \rightarrow mod 1 BA > MCD45
- □ Lower LAI (shrubs, grasses) → MCD45 > mod1
- Croplands is exception: mod1 > MCD45 > GFED3
- □ GFED3 resembles MCD45 in many regions

More detailed comparisons are by Roy et al. (2008, RSE), van der Werf et al. (2010, ACP)

Effective fuel load, a.k.a. fuel consumption (B*C) estimates

Carbon Consumption database CC[I/m/h] from Weather and Ecosystem-Based Fire Emissions (WEB-FE)

Emission factors (F_i)

7

1. Standard GOCART configuration (Chin et al., 2007)

 $F_{BC} = 1.00 \text{ g/kgDM}$ $F_{OC} = 8.00 \text{ g/kgDM}$ $F_{SO2} = 1.12 \text{ g/kgDM}$

2. GLC (Liousse et al., 2003, 2010)						
GLC	GLC vegetation type description	Biomass density,	Burning	F _{BC} , g(BC)/	F _{OC} , g(OC)/	F _{SO2} , g(SO ₂)/
code		kg/m ²	efficiency	kg(DM)	kg(DM)	kg(DM)
1	Tree Cover broadleaved evergreen	23.35	0.25	0.70	6.40	0.57
2	Tree Cover broadleaved deciduous closed	20.00	0.25	0.60	6.00	1.00
3	Tree Cover broadleaved deciduous open	3.30	0.40	0.62	4.00	0.35
4	Tree Cover needle-leaved evergreen	36.70	0.25	0.60	6.00	1.00
5	Tree Cover needle-leaved deciduous	18.90	0.25	0.60	6.00	1.00
6	Tree Cover mixed leaf type	14.00	0.25	0.60	6.01	0.99
7	Tree Cover regularly flooded fresh water	27.00	0.25	0.70	6.40	0.57
8	Tree Cover regularly flooded saline water	14.00	0.60	0.65	5.15	0.46
9	Mosaic: Tree Cover / Other natural vegetation	10.00	0.35	0.61	5.00	0.68
10	Tree cover, burnt	0	þ	0.00	0.00	0.00
11	Shrub Cover closed-open evergreen	1.25	0.90	0.62	4.00	0.35
12	Shrub Cover closed-open deciduous	3.30	0.40	0.62	4.00	0.35
13	Herbaceous Cover closed-open	1.43	0.90	0.62	4.00	0.35
14	Sparse herbaceous or sparse shrub cover	0.90	0.60	0.67	3.11	0.37
15	Regularly flooded shrub and/or herbaceous cover	0	0	0.00	0.00	0.00
16	Cultivated and managed areas	0.44	0.60	0.73	2.10	0.40
17	Mosaic: Cropland / Tree Cover / Other natural v.	1.10	0.80	0.64	3.64	0.36
18	Mosaic: Cropland / Shrub and/or grass cover	1.00	0.75	0.65	3.35	0.37

3. GFED3 (van der Werf, 2010)

	Deforestation	Savanna and Grassland	Woodland	Extratropical forest	Agricultural waste burning	Peat fires
OC	4.30	3.21	3.76	9.14	3.71	4.30
BC	0.57	0.46	0.52	0.56	0.48	0.57
SO ₂	0.71	0.37	0.54	1.00	0.40	0.71

Estimating BB emissions:

- 2. Fire Radiative Power (FRP) based approach
 - $E_i = c_{region,i} * FRP$

8

- E_i emission rate of gas/aerosol species j (g/sec)
- c_{region,j} region- and speciesspecific conversion factor
- **FRP** MODIS-measured Fire Radiative Power (MJ/s)

(Kaufman et al., 1996;

Ichoku and Kaufman, 2005;

Wooster et al., 2003, 2005)

Quick Fire Emissions Dataset (QFED2)

- Developed at NASA's Global Modeling and Assimilation Office for GEOS-5 model
- Uses GFED3 emissions and MODIS AOD as parameters to derive c_{region,j}

(Darmenov and da Silva, 2012, manuscript in preparation)

Global total BC estimates for 2006

Global Land Cover (GLC) dataset

Goddard Chemistry Aerosol Radiation and Transport (GOCART) model

- 10
 - Global aerosol model
- Resolution: 1°(lat) x 1.25°(lon) x 30 vert. layers

- Meteorological fields from Goddard Earth Observing System Data Assimilation System (GEOS DAS) version 4
- 3-hourly output
- Emissions include: dust, sea salt, anthropogenic, sulfate & precursors, BB emissions
- **BB emissions** are input from **external** inventories

GOCART runs with 13 introduced emission options

Study period: June 2006-June 2007 (+3 months spin-up)

- 13 emission options are used as BB emissions in separate GOCART runs
- □ FRP-based QFED inventory uses MODIS AOD as a calibration dataset during development → will not compare to MODIS AOD

124 studied fire cases in 2006-2007

^{0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5}

GOCART ave AOD /MODIS ave AOD

AOD vs. emissions

Plume dispersion

AOD vs emissions

Y = a + bX

X is the OC+BC daily-integrated fire emission in kg per km^2 ,

Y is the average GOCART AOD within the plume,

a (related to the background aerosol loading) and **b** (related to the plume environment) are wind-regimedependent regional fit coefficients

Fit is performed for 3+ data points above the emissions cutoff (~10 kg/km²/day usually) in each wind speed category

Limitations of using MODIS AOD to constrain BB emissions source strength

We assume that AOD under- or overestimation is mostly a result of emissions deficit or excess, and errors in aerosol removal and optical properties are smaller.

18

- Total AOD provides **poor constraint** in heavily polluted environments or for thin plumes (**background-dominated regime**).
- Only one year of BB has been explored. Interannual variability and different burning regimes are needed to refine the method.
 + more cases in Alaska during stronger burning year.
- Coarse spatial resolution of the model, the method is insensitive to small variations in AOD during averaging and aerosol concentration changes.
- MODIS AOD product brings a set of its own limitations (omitting retrievals in thick plume cores, in cloudy scenes, omissions and biases above bright surfaces).

Method Refinement and Application: Towards Improved BB Emissions for Global Models

- 19
- Expand the dataset of test cases to account for inter-annual variability of biomass burning and add cases to BB regions where too little burning was detected in 2006-2007 (Alaska)
 - Severe vs. "regular" fires
 - Consider plume height w.r.t. PBL (use MISR plume height climatology)
- Improve the MODIS AOD validation dataset by developing a multisensor correction procedure in the regions of known bias [Levy et al. 2010; Hyer et al., 2011]
- Define the criteria, develop and test an approach to merge the bestperforming BB emission inventories for different regions
- Estimate the role of the model configuration on the BB emissions-AOD relationship and subsequent analysis

AeroCom contribution

Estimate the role of the model configuration on the BB emissions-AOD relationship and subsequent analysis (..test the emissions-AOD relationship in other models ..)

Suggested runs (2008):

- Standard model run with no BB emissions
- Standard model run with your own emissions
- Standard model run with provided new BB emissions, your emission injection height (EIH)
- Standard model run with prescribed new emissions, prescribed ElH

Desired output: daily

- **3D:** AOD, concentration, winds, Temperature, pressure
- □ 2D: emissions (BC, OC, SO₂, other)

Background-dominated regions

	modi-Con-GOCART	mod1-GLC-GOCART	mod1-GLC-GLC
08 112 3 <mark>3</mark> 16 120	08 112 3316 120	08 112 3316 120	08 112 3316 120
31	31	31	31
29	29	29	

mod1-CCi-GOCART 32	mod1-CCm-GO 32
75 77 77	
30	30 ^{- 75} - 77
28	28

mod1-GLC-GOCART	mod1-GLC-GLC			
32				
75 77 79	75 77			
30				
28	28			

MC45-	CCi-(GOC	ART		MC45	5-CCm	-GOC
	32						
75		77	7		75		77
	30					30	
				_			
	28					28	

ART	MC45-GLC-GOCART			١RT	MC45-GLC-GLC			
		32						
79	75		77	7	7	5	77	
		30				30		
		28				28		

Plume heights check (want to see most in PBL)

Part 1 summary

- We have a representative set of commonly used BB aerosol emission estimates based on different approaches, but yielding a broad range of estimated emission amounts
- Choice of burned area dataset has the greatest effect (up to an order of magnitude) on resultant emission estimates difference; emission factor or fuel consumption – contribute factor of 2-3 difference each

Part 2

 Critically test performance of each emission option in the model: compare GOCART-simulated Aerosol Optical Depth (AOD) with satellite-measured smoke AOD

Part 2 summary

- Regional analysis of emission inventories and their performance is essential
- AOD-emissions relationship forms 2 regimes: backgrounddominated, and BB-dominated
- In BB-dominated regime, wind speed defines the AOD-emissions relationship

Part 3

Future work: Apply the current method to improve BB emission estimates for the global models