# How can we improve estimates of indirect aerosol forcing?

Joyce Penner and Cheng Zhou University of Michigan AEROCOM Meeting, Sept 10-13, 2012 Seattle

#### Estimates of albedo effect vary widely:

Published since 2001 IPCC report:

Based on fitting model to satellite:

Based on a single model varying method to treat aerosol effects

Based on 3 models with fixed aerosol concentrations



### Are there issues with satellite-based observation methods?

- Averaging data (and model) over larger areas gives less sensitivity (Quaas et al., 2004)
- Using  $\tau_a$  as a proxy for aerosol number in regression estimates tends to underestimate the first indirect effect (Feingold, 2003).
- Using regression techniques tends to underestimate the first indirect effect (Feingold, 2003)

### Use parcel model to examine sensitivity of regression method use in satellite analyses:



α= aerosolextinction (oroptical depth)

Feingold, 2003

Figure 3.  $r_e$  vs.  $\alpha$  for a range of  $r_g$ ,  $\sigma$ ,  $\epsilon$ , and w. The fit is weighted by a Gaussian distribution of w, centred at w = 0.

## Expand equation for $\alpha$ to determine true indirect effect

$$\alpha \approx N_a^{c_1} r_g^{c_2} \sigma^{c_3} \varepsilon^{c_4}$$
$$-IE' = \frac{d \ln r_e}{d \ln \alpha} = S(N_a) \frac{\partial \ln N_a}{\partial \ln \alpha} + S(r_g) \frac{\partial \ln r_g}{\partial \ln \alpha} + S(\sigma) \frac{\partial \ln \sigma}{\partial \ln \alpha} + S(\varepsilon) \frac{\partial \ln \varepsilon}{\partial \ln \alpha}$$

Table 2. Contributions  $C(X_i) = S(X_i)/c_i$  to IE' (Equation 4)

|             |        |        |          | RH = 95% | $\lambda = 532 \text{ nm}$ |
|-------------|--------|--------|----------|----------|----------------------------|
|             | All    | Clean  | Polluted | All      | All                        |
| $C(N_a)$    | -0.299 | -0.315 | -0.225   | -0.299   | -0.299                     |
| $C(r_g)$    | -0.026 | -0.024 | -0.032   | -0.028   | -0.021                     |
| $C(\sigma)$ | 0.043  | 0.026  | 0.071    | 0.051    | 0.030                      |
| C(\epsilon) | -0.115 | -0.102 | -0.133   | -0.049   | -0.104                     |
| IE'         | 0.40   | 0.41   | 0.32     | 0.33     | 0.39                       |
| IE          | 0.16   | 0.14   | 0.03     | 0.17     | 0.13                       |

 $\alpha = \frac{\partial \ln \alpha}{\partial n} = 1.00$  3.36 4.35 and 0.26 for N r  $\sigma$  and  $\epsilon$  respectively at

Conclusion: Satellite-based estimates based on regression are probably flawed

 Use of optical depth as proxy for all aerosol properties underestimates regression between aerosol and drops

 However, model-based estimates do not agree with satellite data, so are also flawed PNAS paper: Penner et al. 2011: Examined satellite estimates using model:

Quaas method: 
$$\left[\frac{\partial \alpha}{\partial \ln N_d}\right]_{f,L} \frac{d \ln N_d}{d \ln \tau_a} \Delta \ln \tau_{anth}$$

Examine slope using model:

$$\alpha_{N_d} = \frac{d \ln N_d}{d \ln AI}$$

With AI =  $\tau_a$  or  $\tau_a \lambda$ where  $\lambda = \text{Ångström exp.}$ 



### NAM: Scatter plot of ln(N<sub>d</sub>) vs ln(AOD)



 $N_d$  may not always increase with optical depth



### NAO: Scatter plot of ln(N<sub>d</sub>) vs ln(AI)



There is a much stronger relationship between  $log(N_d)$  and  $log(\tau_a \lambda)$  than between  $log(N_d)$  and  $log(\tau_a)$ 



Modeled values are significantly different on a regional scale:



## Evaluate satellite method using model as true estimate for the change in N<sub>d</sub>

 $ln(N_d)$  vs ln(AOD) using PD:



#### Model slope of ln(Nd)/ln(AOD) using PD only:



#### Model slope of ln(Nd)/ln(AOD) using PD and PI:



## Use present day ln(N<sub>d</sub>)/ln(AOD) to estimate PI N<sub>d</sub> and forcing:

$$N_d(PI) = \exp(\ln(N_d(PD)) - \frac{\Delta \ln(N_d(PD))}{\Delta \ln(\tau_a(PD))} (\ln(\tau_a(PD)) - \ln(\tau_a(PI))))$$



Use of AI to estimate PI N<sub>d</sub> Provides a closer global average:



## But the regional forcing is off especially over land areas:



### How to use satellite data together with model data to get the best result? Here, we used the model to pick regions:



### How to use satellite data together with model data to get the best result? Here, we used the model to pick regions:

Al slope for PD SPO is not as good a match for PI NPO, but perhaps acceptable.



### CERES: Difference in flux is > 2Wm<sup>-2</sup>



NPO JJA Solar insolation: 450.7 Wm<sup>-2</sup>

SPO DJF Solar insolation: 476.8 Wm<sup>-2</sup>

But, we need to account for difference in incoming solar insolation, exclude ice clouds, and account for differences due to changes in LWP, CF

### Use CERES estimates of albedo:



#### Restrict analysis of albedo change to clouds with f>99% or f>50%

## Estimate "albedo effect" by normalizing to fixed LWP:



Albedo effect: (first indirect effect)

change in cloudy sky albedo × cloud fraction × solar insolation = -1.8 to -2.2 Wm<sup>-2</sup> (range for f>0.5% to f>0.99%); Compare to Model:-2.65 Wm<sup>-2</sup> or -3.6Wm<sup>-2</sup> (w/same methodology)

### 1<sup>st</sup> + 2<sup>nd</sup> indirect effect: Increase in LWP and N<sub>d</sub>:



NPO JJA LWP, daily means, daytime conditions, f>99% Mean: 84.846 gm-2 SPO DJF LWP, daily means, daytime conditions, f>99% Mean: 82.439 gm-2



SW TOA change due to LWP+N<sub>d</sub> in all clouds : -3.8 Wm<sup>-2</sup>

### Summary

- Use of spatial variations of satellite data without consideration of temporal variations is subject to large errors (Penner, et al. 2011)
- Results for South Pacific Ocean can be averaged to estimate pre-industrial conditions
- Albedo forcing in NPO is -1.8 to -2.2 Wm<sup>-2</sup>
- Reasons for disagreements with model results clearly identified:

Due to identified differences in LWP, cloud fraction, AOD

 Including changes in LWP (not sorting) increases this to -3.8 Wm<sup>-2</sup> (note: accounting for changes in CF would make our estimated forcing even larger)

### Assumptions

- Modeled Nd-AOD in SPO can be used to gauge PI conditions in NPO
- The increase in albedo for liquid clouds is the same for all cloud fractions
- Our flux estimates assume no masking of outgoing SW by ice clouds
- Regions with f<50% are not included

Can we improve on (2) and (4) above?

Assumptions: The increase in albedo for liquid clouds is the same for all cloud fractions; Regions with f<50% not included:

- Instead of sorting by LWP, match regions in NPO and SPO by meteorological forcing:
  - Stability
  - Surface latent heat flux
  - Surface sensible heat flux
  - Large scale wind, RH, and T forcing
- Add use of Calypso data to check whether aerosols/clouds are "mixed" (at same altitude) (e.g. Costantino & Bréon paper) (separate by CTP or just use constant LWP?)
- Harder to be assured that AOD over a small region would be representative of PD-PI changes: need to check using model/data comparisons
- Will need to use level 2 satellite data which is more intensive
- Can perhaps expand to running cloud resolving models as a check on GCM's

### Next steps for AEROCOM

- Perhaps need one or two model/data groups to engage in this activity
- Could perhaps expand to other regions by comparison of PD values only (similar to Quaas et al. 2009)
- Finding data that can be used for PI values for other regions may be difficult