How can we improve estimates of indirect aerosol forcing?

Joyce Penner and Cheng Zhou University of Michigan AEROCOM Meeting, Sept 10-13, 2012 **Seattle**

Estimates of albedo effect vary widely:

Published since 2001 IPCC report:

Based on fitting model to satellite:

Based on a single model varying method to treat aerosol effects

Based on 3 models with fixed aerosol concentrations

Are there issues with satellite-based observation methods?

- Averaging data (and model) over larger areas gives less sensitivity (Quaas et al., 2004)
- Using τ_a as a proxy for aerosol number in regression estimates tends to underestimate the first indirect effect (Feingold, 2003).
- Using regression techniques tends to underestimate the first indirect effect (Feingold, 2003)

Use parcel model to examine sensitivity of regression method use in satellite analyses:

 α = aerosol extinction (or optical depth)

Feingold, 2003

Figure 3. r_e vs. α for a range of r_g , σ , ϵ , and w. The fit is weighted by a Gaussian distribution of w, centred at $w = 0$.

Expand equation for α to determine true indirect effect

$$
\alpha \approx N_a^{c_1} r_g^{c_2} \sigma^{c_3} \varepsilon^{c_4}
$$

-
$$
I E' = \frac{d \ln r_e}{d \ln \alpha} = S(N_a) \frac{\partial \ln N_a}{\partial \ln \alpha} + S(r_g) \frac{\partial \ln r_g}{\partial \ln \alpha} + S(\sigma) \frac{\partial \ln \sigma}{\partial \ln \alpha} + S(\varepsilon) \frac{\partial \ln \varepsilon}{\partial \ln \alpha}
$$

Table 2. Contributions $C(X_i) = S(X_i)/c_i$ to IE' (Equation 4)

				$RH = 95%$	λ = 532 nm
	All	Clean	Polluted	Аll	All
$C(N_a)$	-0.299	-0.315	-0.225	-0.299	-0.299
$C(r_g)$	-0.026	-0.024	-0.032	-0.028	-0.021
$C(\sigma)$	0.043	0.026	0.071	0.051	0.030
C (ensilon)	-0.115	-0.102	-0.133	-0.049	-0.104
IE'	0.40	0.41	0.32	0.33	0.39
正	0.16	0.14	0.03	0.17	0.13

 $a = \frac{\partial \ln a}{\partial t} = 1.00, 3.36, 4.35,$ and 0.26 for N r and a reconnectivaly at

Conclusion: Satellite-based estimates based on regression are probably flawed

• Use of optical depth as proxy for all aerosol properties underestimates regression between aerosol and drops

• However, model-based estimates do not agree with satellite data, so are also flawed

PNAS paper: Penner et al. 2011: Examined satellite estimates using model:

Quaas method:
$$
\left[\frac{\partial \alpha}{\partial \ln N_d}\right]_{f,L} \frac{d \ln N_d}{d \ln \tau_a} \Delta \ln \tau_{\text{anth}}
$$

Examine slope using model:

$$
\alpha_{N_d} = \frac{d \ln N_d}{d \ln A I} \quad \text{With Al} = \tau_a \text{ or } \tau_a \lambda
$$

where $\lambda = \text{Angström exp.}$

NAM: Scatter plot of $ln(N_d)$ vs $ln(AOD)$

 N_d may not always increase with optical depth

NAO: Scatter plot of $ln(N_d)$ vs $ln(Al)$

There is a much stronger relationship between $log(N_d)$ and $log(\tau_a \lambda)$ than between $log(N_d)$ and $log(\tau_a)$

Modeled values are significantly different on a regional scale:

Evaluate satellite method using model as true estimate for the change in N_d

 $ln(N_d)$ vs $ln(AOD)$ using PD:

Model slope of $In(Nd)/In(AOD)$ using PD only:

Model slope of $In(Nd)/In(AOD)$ using PD and PI:

Regions

Use present day $ln(N_d)/ln(AOD)$ to estimate PI N_d and forcing:

$$
N_d(PI) = \exp(\ln(N_d(PD)) - \frac{\Delta \ln(N_d(PD))}{\Delta \ln(\tau_a(PD))} (\ln(\tau_a(PD)) - \ln(\tau_a(PI))))
$$

Use of AI to estimate PI N_d Provides a closer global average:

But the regional forcing is off especially over land areas:

How to use satellite data together with model data to get the best result? Here, we used the model to pick regions:

How to use satellite data together with model data to get the best result? Here, we used the model to pick regions:

AI slope for PD SPO is not as good a match for PI NPO, but perhaps acceptable.

CERES: Difference in flux is > 2Wm-2

NPO JJA Solar insolation: 450.7 Wm⁻² SPO DJF Solar insolation: 476.8 Wm⁻²

But, we need to account for difference in incoming solar insolation, exclude ice clouds, and account for differences due to changes in LWP, CF

Use CERES estimates of albedo:

Restrict analysis of albedo change to clouds with f>99% or f>50%

Estimate "albedo effect" by normalizing to fixed LWP:

Albedo effect: (first indirect effect)

change in cloudy sky albedo × cloud fraction × solar insolation $= -1.8$ to -2.2 Wm⁻² (range for f>0.5% to f>0.99%); Compare to Model:-2.65 Wm-2 or -3.6Wm-2 (w/same methodology)

1st + 2nd indirect effect: Increase in LWP and N_d :

NPO JJA LWP, daily means, daytime conditions, f>99% Mean: 84.846 gm-2 SPO DJF LWP, daily means, daytime conditions, f>99% Mean: 82.439 gm-2

SW TOA change due to LWP+N_d in all clouds : -3.8 Wm⁻²

Summary

- Use of spatial variations of satellite data without consideration of temporal variations is subject to large errors (Penner, et al. 2011)
- Results for South Pacific Ocean can be averaged to estimate pre-industrial conditions
- Albedo forcing in NPO is -1.8 to -2.2 Wm⁻²
- Reasons for disagreements with model results clearly identified:

– Due to identified differences in LWP, cloud fraction, AOD

• Including changes in LWP (not sorting) increases this to -3.8 Wm-2 (note: accounting for changes in CF would make our estimated forcing even larger)

Assumptions

- Modeled Nd-AOD in SPO can be used to gauge PI conditions in NPO
- The increase in albedo for liquid clouds is the same for all cloud fractions
- Our flux estimates assume no masking of outgoing SW by ice clouds
- Regions with f<50% are not included

Can we improve on (2) and (4) above?

Assumptions: The increase in albedo for liquid clouds is the same for all cloud fractions; Regions with f<50% not included:

- Instead of sorting by LWP, match regions in NPO and SPO by meteorological forcing:
	- Stability
	- Surface latent heat flux
	- Surface sensible heat flux
	- Large scale wind, RH, and T forcing
- Add use of Calypso data to check whether aerosols/clouds are "mixed" (at same altitude) (e.g. Costantino & Bréon paper) (separate by CTP or just use constant LWP?)
- Harder to be assured that AOD over a small region would be representative of PD-PI changes: need to check using model/data comparisons
- Will need to use level 2 satellite data which is more intensive
- Can perhaps expand to running cloud resolving models as a check on GCM's

Next steps for AEROCOM

- Perhaps need one or two model/data groups to engage in this activity
- Could perhaps expand to other regions by comparison of PD values only (similar to Quaas et al. 2009)
- Finding data that can be used for PI values for other regions may be difficult