Anthropogenic emissions enhance biogenic SOA formation and its radiative cooling effect

Guangxing Lin and Joyce E. Penner Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan

Model set up

- a fully explicit SOA model
- 1, SOA formation from organic nitrates and hydroperoxides through traditional gas-particle partitioning, followed by further aerosol phase reactions to form oligomers .
- 2, Formation of non-evaporative SOA from uptake of glyoxal and methylglyoxal on sulfate aerosols and cloud droplets as proposed by *Fu et al.* [2008].
- 3, Formation of non-evaporative SOA from uptake of epoxides on sulfate [*Paulot et al.*, 2009]

An offline radiative transfer model to calculate the forcing

	Size distributions	Refractive index
Case 1	median radius, r_g =0.08 µm; geometric standard deviation, σ_g =1.4.	Light absorbing: (1.53–0.03i) at 550 nm <i>Kirchstetter et al.</i> [2004].
Case 2	43% of SOA: r_g =0.005 µm and σ_g =1.5 57% of SOA: r_g =0.08 µm and σ_g =1.7.	50% of SOA is light absorbing 50% of SOA is pure scattering

PD SOA and Change in SOA between PD and PI

		Load (mg/m²)	Burden (Tg)	Total source (Tg/yr)	Total biogenic source (Tg/yr)
PD	This work	2.91	1.47	111.2	98.6
	Other global models ^a			18-69	
	AMS constraint ^b			50-230	
PD-PI	This work	0.97 (50%)	0.49 (50%)	31.2(39%)	18.6(23%)
	Other models from AeroCom phase II ^c	0.09~0.3			
	AMS constraint ^b		0.5~2.1	40~160	

Forcing due to the change in SOA

	Case 1	Case 2	Other models reported in AeroCom phase II ^c	AMS constraint ^b
Direct forcing (W/m ²)	-0.06	-0.21	-0.01~-0.07	-0.41~-0.11
First indirect forcing (W/m ²)	-0.32	-0.24		-0.74~-0.36

^a: Lin et al. (2012); ^b: Spracklen et al. (2011); ^c: Myhre et al. (2012)