

A multi-model comparison of dust aerosols and associated processes over Northern Africa and North Atlantic Ocean

Dongchul Kim^{1,2}, Mian Chin², Hongbin Yu^{2,3}, Thomas Diehl^{1,2}, Qian Tan^{1,2}, Susanne Bauer^{4,5}, Toshihiko Takemura⁶, Luca Pozzoli⁷, and Nicolas Bellouin⁸

¹USRA, Columbia, Maryland, USA, ²NASA GSFC, Greenbelt, Maryland, USA, ³University of Maryland College Park, College Park, Maryland, USA, ⁴NASA GISS, New York, New York, USA, ⁵Earth Institute, Columbia University, New York, New York, USA, ⁶Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan, ⁷European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy, ⁸Met Office Hadley Centre, Exeter, UK. Meridional mean of AOD and DOD
Difference in slope during transport

2. Distribution of Loss Frequency (s⁻¹)
- Difference in location and quantity

GISS Loss Frequency (DEP/LOAD) Annual (4.0e-01)