Simulation of carbonaceous aerosols driven by different emissions

Qianxia Liu(刘茜霞) Zaizhi Wang(王在志) Hua Zhang(张华)

National Climate Center, China Meteorological Administration, Beijing, China, 100081 liuqx@cma.gov.cn

2012 AeroCom (Aerosol Comparisons between Observations and Models) 10-13 September 2012, University of Washington, Seattle, USA

Contents

Model Description

Experiments

Discussions

Introduction

RADIATIVE FORCING COMPONENTS

(IPCC, 2007)

BCC_AGCM2.0.1/CUACE/Aero

Aerosols	12bin sectional model: r=0.005-20.48µm (dry)
Sources	Seal-salt:Monahan 1986, Vignati2001, Gong 2003Soil Dust:size-segregated (Marticorena and Bergametti1995)BC/OC:fossil fuel(Cook et al.) biomass burning (Liousse and Penner et al) boreal (Lavoue et al)Sulphate:anthropogenic SO2 and SO4 (GEIA 1B: 2-LEVEL) oceanic DMS concentration (Kettle et al. 1999) land H_2S (Benkovitz et al.)
Prognostic Variables	Aerosol mass mixing ratio in each size bin, DMS, SO ₂ , H ₂ S, H ₂ SO ₄ (g)
Clear-sky processes	Nucleation, condensation, coagulation, on-line S chemistry with MOZART'S $OH \pi NO_3$
Wet Processes	Below- and In-cloud scavenging(Gong et al, 2003) Cloud activation and cloud chemistry with O_3 , H_2O_2 , HNO_3 (von Salzen et al, 2000)
Dry Deposition	Size-dependent particle and SO_2 , Zhang et al (2001)
Resolution	128×64×26, 20min

BCC_AGCM2.0.1/CUACE/Aero

Aerosols	12bin sectional model: r=0.005-20.48µm (dry)
Sources	Seal-salt:Monahan 1986, Vignati2001, Gong 2003Soil Dust:size-segregated (Marticorena and Bergametti1995)BC/OC:fossil fuel(Cook et al.)IPCC-AR5 emissions biomass burning (Liousse and Penner et al) boreal (Lavoue et al)Sulphate:anthropogenic SO2 and SO4 (GEIA 1B: 2-LEVEL) oceanic DMS concentration (Kettle et al. 1999) land H_2S (Benkovitz et al.)
Prognostic Variables	Aerosol mass mixing ratio in each size bin, DMS, SO ₂ , H ₂ S, H ₂ SO ₄ (g)
Clear-sky processes	Nucleation, condensation, coagulation, on-line S chemistry with MOZART'S $OH \pi NO_3$
Wet Processes	Below- and In-cloud scavenging(Gong et al, 2003) Cloud activation and cloud chemistry with O_3 , H_2O_2 , HNO_3 (von Salzen et al, 2000)
Dry Deposition	Size-dependent particle and SO_2 , Zhang et al (2001)
Resolution	128×64×26, 20min

Model run and Valiation data

- Model run: climatologically monthly SST were used to drive the climate aerosol model continuously. *Cook emissions etc*: climatologically *IPCC-AR5 Emissions*: 1850-2000
- **Validation data: Aerocom, AEROCE, EMEP**
- Variables: Annually average column concentrations, monthly average mass concentrations, bugets, radiative fluxes etc

Budgets

	BC			OC		
	1850	2000	old	1850	2000	old
Emissions(Tg/yr)	3.08	7.74	11.02	22.61	35.48	69.18
In-Cloud (Tg/yr)	-1.42	-3.54	-5.02	-10.36	-16.75	-34.20
Below- cloud(Tg/yr)	-0.04	-0.09	-0.49	-0.27	-0.36	-3.40
Dry Dep. (Tg/yr)	-1.64	-4.11	-5.52	-12.02	-18.46	-31.63
Total Dep.(Tg/yr)	-3.10	-7.74	-11.03	-22.65	-35.56	-69.23
Burden(Tg/ yr)	0.026	0.063	0.115	0.194	0.31	0.853
Residence Time (d)	3.09	2.97	3.79	3.13	3.19	4.50

一八五零年

OC

1850

180 150W 120W 90W 80W 30W 0 30E 60E 90E 120E 150E 180

1998

0.7 -

Variables	obs	1890-1909	1940-1969	1979-1999	old
RESTOM		1.024	1.059	1.016	-0.467
FSNTOA(W m-2)	234.004	236.405	236.403	236.381	235.259
FLUT (W m ⁻²)	233.946	233.432	233.395	233.415	235.725
RESSURF		1.016	1.056	1.012	-0.608
FSNS	168, 165.9	161.154	161.145	161.051	162.215
FLNS	66, 49.4	59.873	59.885	59.84	60.037
LHFLX (W m ⁻²)	84.948	78.258	78.19	78.212	82.380
SHFLX (W m ⁻²)	15.795	22.007	22.015	21.986	20.407
CLDTOT (%)	62.5, 66.715	58.768	58.807	58.799	59.038
LWCF (W m^{-2})	30.355	29.096	29.135	29.113	28.333
SWCF (W m ⁻²)	-54.163	-55.326	-55.335	-55.342	-55.956
PREH2O(mm)	24.575	23.508	23.494	23.503	23.365
PRECT(mm/day)	2.69, 2.61	2.682	2.68	2.68	2.820

Summary

- The model results showed that the aerosol model system can reasonably grasp horizontal and vertical dispersal of carbonaceous aerosols except for a little lower in some emission regions than AeroCom data.
- Compared with the old emissions driven simulation results, the AR5-emissions driven ones seemed to be a little underestimate BC concentrations in some regions, especially in anthropogenic areas.
- Compared with some surface observation sites, both of the simulation can basically reproduce BC seasonal variations, however, they all tend to underestimate.

OUTLOOK

- More observation data should be got to test the model performance, so I need more help and suggestions from you.
- Can all the AeroCom observation data can freely be downloaded? Where and How to get them?

