

AeroCom emissions – a brief update

Thomas Diehl^{1,2}

1: NASA Goddard Space Flight Center 2: Universities Space Research Associatio

2: Universities Space Research Association

11th AeroCom Workshop, Seattle, September 10-13, 2012

Emission paper submitted

Atmos. Chem. Phys. Discuss., 12, 1–61, 2012 www.atmos-chem-phys-discuss.net/12/1/2012/ doi:10.5194/acpd-12-1-2012 © Author(s) 2012. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO₂ from 1980 to 2010 for hindcast model experiments

T. Diehl^{1,2}, A. Heil³, M. Chin², X. Pan^{4,2}, D. Streets⁵, M. Schultz³, and S. Kinne⁶

¹Universities Space Research Association, Columbia, Maryland, USA

²NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

³Forschungszentrum Jülich, Jülich, Germany

⁵Argonne National Laboratory, Argonne, Illinois, USA

⁶Max Planck Institute for Meteorology, Hamburg, Germany

Received: 31 July 2012 – Accepted: 27 August 2012 – Published:

Correspondence to: T. Diehl (thomas.diehl@nasa.gov)

Published by Copernicus Publications on behalf of the European Geosciences Union.

⁴Morgan State University, Baltimore, Maryland, USA

Goals:

- I. Provide choices of emissions for aerosol hindcast experiments, describe methodologies, and analyze emission features.
- Discuss options of injection heights for biomass burning and volcanic emissions, and biomass burning EFs and aircraft Els for A2-MAP).

Emissions available for AeroCom Phase II

- Ia. A2-MAP-vI (1980-2007) (formerly A2-HCA0-vI) Contains land-based anthrop. emissions from D. Streets, aircraft emissions from NASA's AEAP project, ship emissions from V. Eyring, and volcanic emissions.
- Ib. A2-MAP-v2 (1980-2005) (formerly A2-HCA0-v2) Anthropogenic SO2 emissions replaced with emissions from EDGAR 4.1 to fix overestimate in A2-MAP-v1 over Europe.

2. A2-ACCMIP (1980-2010)

Anthropogenic part derived from ACCMIP (Lamarque et al.) via linear interpolation; years after 2000 derived from RCP8.5. Biomass burning emissions based on RETRO, GFED-v2 and RCP8.5.

Also available: PI emissions for 1850 (Lamarque et al.) and 1750 (Dentener et al.).

Overview

	A2-MAP-v1	A2-MAP-v2	A2-ACCMIP
Spatial Resolution	1x1	1x1	0.5x0.5
Species	BC, OC, SO2	BC, OC, SO2	BC, OC, SO2, NH3, and other species
Sectors	Anthrop. land-based, ships, aircraft, BB, volcanic	Anthrop. land-based, ships, aircraft, BB, volcanic	Anthrop. land-based, ships, aircraft (BC), BB
Temporal Resolution	yearly, monthly (aircraft & BB), daily (volcanoes)	yearly, monthly (aircraft & BB), daily (volcanoes)	yearly, monthly (BB)
Period	1980-2007 (2009 for volcanoes)	1980-2005 (2009 for volcanoes)	1980-2010

Regions for anthropogenic emissions

SO2 land-based emissions

Anthropogenic (land-based) SO2 Emission

A2-MAP-v1 A2-MAP-v2 A2-ACCMIP

VI trend probably overestimated; SO2 reduction measures and breakdown of communism not taken into account

BC Land-based Emissions

Anthropogenic (land-based) BC Emission

Former-USSR UŞA 2.5 x Δ2-ΜΔΡ-ν2 + Δ2-ΜΔΡ-v1 x 42-MAP-v2 + A2-ACCMIE 2.0 2.0 1.5 (C)/Jr 1.0 1.5 1.0 1.0 1.0 0.5 💏 🕈 0.5 0.0 E 0.0 E 1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010 **OECD-Europe** South-Asia 2.5 2.5 A2-MAP-v1 x A2-MAP-v2 A2-ACCMIF A2-MAP-v1 x A2-MAP-v2 + Δ2-ΔCCMIE ACCMIE 2.0 2.0 1.5 L 1.0 L ม 1.5 (C))6⊥ 1.0 0.5 0.5 0.0 0.0 1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010 Eastern-Europe East-Asia 2.5 2 5 + A2-MAP-v1 x A2-MAP-v2 + A2-ACCMIP + A2-MAP-v1 + A2-ACCMIF 2.0 E 2.0 л 1.5 (С)/лг 1.0 1.5 Tg(C)/yr 1.0 0.5 0.5 0.0 0.0 E 2010 1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005

Decline in residential fuel use and transport sector from 1995 to 1996 in U.S.

OC land-based emissions

UŞA Former-USSR A2-MAP-v1 x A2-MAP-v2 A2-MAP-v1 x A2-MAP-v2 A2-ACCMIE 3 Tg(C)∕yr ⊳ Tg(C)/yr 0 1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010 **OECD-Europe** South-Asia + A2-MAP-v1 + A2-MAP-v1 x A2-MAP-v2 A2-ACCMI 3 Tg(C)/yr Tg(C)/yr 7 0 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 East-Asia Eastern-Europe + A2-MAP-v1 x A2-MAP-v2 ► 42-ACCMII Δ2-MΔP-v1 3 Tg(C)/yr c Tg(C)/yr ٥ 0 H 1980 2005 2010 1980 1985 1990 1995 2000 2005 2010 1985 2000 1995

Anthropogenic (land-based) OC Emission

Former USSR and Asia: Similar trends, but larger differences than for BC

Ship emission trends

A2-ACCMIP SO₂: decreasing fuel sulfur content after 2005

Large BC difference between A2-MAP-v1 and A2-ACCMIP probably due to different assumptions about BC emission factor

A2-MAP provides fuel; EI must be applied. A2-ACCMIP provides BC only. Both inventories are based on scenarios after year 2000

3.5

0.5

90S

60S

30S

n

0.0e+00 2.0e-20 4.0e-20 6.0e-20 8.0e-20 1.0e-19 2.0e-19 3.0e-19 4.0e-19 5.0e-19 6.0e-19

30N

60N

90N

10.7 km

(1999)

3.5

0.5

90S

30S

6.e-20 8.e-20

60S

0.e+00 2.e-20 4.e-20

30N

1.e-19 2.e-19 3.e-19

60N

4.e-19 5.e-19 90N

Regions for biomass burning emissions

6 regions: 87% of total BB OC

OC Biomass Burning Emissions

Biomass Burning OC Emission

Volcanic SO2 Emissions

- Daily SO₂ emissions and plume heights for 1167 volcanoes from 1-1-1979 to 31-12-2009
- Emissions due to explosive and effusive eruptions as well as silent degassing taken into account
- Eruption data including the VEI is from the Smithsonian's Global Volcanism Program (GVP)
- Additional data from TOMS, OMI, and COSPEC measurements, and other estimates in the literature

Plume Height Estimation in AeroCom

- The plume height default is based on the VEI/height relationship. Data from the weekly or monthly GVP reports has been added over time. Plume heights for major eruptions are from analyses in the literature.
- SO2 is evenly distributed over all levels located in the top 1/3 of the column.
- Silently degassing volcanoes emit at the elevation of the volcano. No flank degassing is considered.

Location of Volcanoes

Emitting Volcanoes 1979-2009

Mostly located along arcs of subduction zones

• More frequent, violent and short-lived eruptions

Fewer hot spot and rift volcanoes

Longer lasting eruptions, more effusive, more SO2

Total SO₂ per Year

About 11-13 Tg/year from silent degassing included

Global emissions [Tg/a]

		BC	BC	OC	OC	SO2	SO2
		MAPv2	ACCMIP	MAPv2	ACCMIP	MAPv2	ACCMIP
GLB anthrop.	Range	4.6-5.3	4.5-5.2	7.7-8.9	11.0-12.8	104-143	92.6-120
	2005	5.3	5.2	8.9	12.8	113.4	96.7
BB	Range	4.5-7.1	1.8-3.5	36.2-56.4	14.4-33.1	5.4-8.5	2.0-6.6
	2005	5.3	2.6	42.0	21.9	6.3	3.6
Volcanic	Range					22.1-51.7	
	2005					26.7	(26.7)
Total	2005	10.6	7.9	51.1	34.8	154.4	140.0

Summary

- Overall, major global anthropogenic emission trends are captured in both inventories. Global differences are lowest for BC (2% in 2005), followed by SO₂ (17%) and OC (43%). Regional differences can be 100% or more, especially for OC (but also BC and SO2) over the former USSR.
- Globally, the largest differences (~100%) occur for BB due to higher emission factors applied to A2-MAP. Large differences (>100%) for dry mass burned prior to 1996 for some regions and years.
- Both inventories constructed from multiple inventories => internal inconsistencies
- Choice of inventory depends on scope of experiment. Differences: inter-annual variation, resolution, period, volcanic emissions, consistency with CMIP5/ACCMIP.