

Evaluating aerosol microphysics models: Observational datasets and plans for AEROCOM microphysics working group

<u>Graham Mann</u>, Ken Carslaw, Dominick Spracklen, Joonas Merikanto, Maria Frontoso, Carly Reddington (School of Earth & Environment, University of Leeds, U.K.)

AEROCOM microphysics working group

(A2-CTRL-2006)

(A2-SIZ1-2006)

(A2-SIZ2-2006)

At last year's AEROCOM workshop in Iceland, plan agreed for working group to evaluate aerosol microphysics models against range of available in-situ observations.

Evaluate & document diversity of AEROCOM models in simulated number conc'n

- -- CN concentrations against CPC observations at GAW & other sites
- -- CCN concentrations vs obs. from field campaigns & monitoring sites.
- -- size distributions against DMPS observations at EUSAAR sites
- -- size-resolved number concentrations & mean size against compilations of observed aerosol properties in literature (e.g. Heintzenberg et al, 2000, 2002).
- -- vertical CN, CCN profiles from models against compilations of aircraft observations (e.g. TRACE-P, PEM-Tropics, INCA, UFA-EXPORT)

Please suggest other similar datasets that can be used to constrain models

Experiments:

- -- Control simulation reference year 2006
- -- As CTRL but with condensation switched off
- -- As CTRL but with coagulation switched off
- -- As CTRL but with primary emissions of SO4 and BC/OC off (A2-SIZ3-2006)
- -- As CTRL but with new particle formation switched off (A2-SIZ4-2006)

Use HCA-0 emissions in models to minimise differences between model simulations

Models characterise size distribution in many different ways

- -- mass-only in aerosol types each with fixed size distribution (~10 aerosol tracers)
- -- number & mass concentrations in size modes (20-30 aerosol tracers)
- -- number & mass in concentrations size bins (100-200 aerosol tracers)

CCN observations retrieve CCN at many different supersaturations (Not possible to make simple CCN diagnostics for models to output.)

CN measurements can use different minimum diameter (e.g. 3nm or 10nm).

Size distribution observations made across different size ranges.

Approach settled on at last workshop:

Instead of asking for extra complicated diagnostics, just make life simple: Ask modelers to <u>write "all-aerosol-tracer" output</u> to AEROCOM database And to provide README file with information on how size is handled in model.

Then can compare CN, CCN, size-resolved N ensuring consistent methodology.

Also ask modellers to interpolate to selected sites outputting at hourly resolution

- -- makes separation into different air mass types possible
- -- generate statistics of size distribution over daily cycle
- -- how well do microphysics models reproduce new particle formation events?

- -- Monthly-mean all-aerosol-tracer output on full 3D model grid (3D-M)
- -- Daily-mean all-aerosol-tracer output over vertical profile at sites (1D-D)
- -- Hourly-mean all-aerosol-tracer output at surface at sites (0D-H) Use CMOR tables: Aerocom_table_1DD, Aerocom_table_0DH on website.

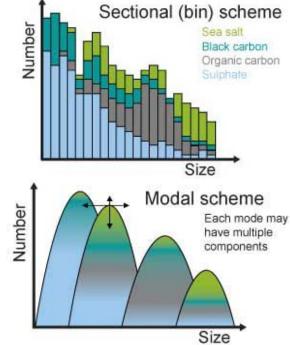
Selected sites:

- GAW & ARM sites (CPC, nephelometer, aethalometer, some with lidar) Alert, Barrow, Bondville, Mauna Loa, Neumayer, Samoa, South Pole, Southern Great Plains,
- 21 EUSAAR supersites (many with DMPS, AMS, lidar) Aspreveten, Auchenworth, Birkenes, Cabauw, Finokalia, Harwell, Hohenpeissenberg, Hyytiala, Ispra, Jungfraujoch, Kosetice, K-puzta, Mace Head, Melpitz, Montseny, Moussala, Pallas, Preila, Puy de Dome, Valvihill, Zeppelin.

Additional sites with observations

Cape Grim, Cape Point, Capo San Juan, Elandsfontein, Guangzhou, Manaus, Monte Cimone, Mount Waliguan, Paverne, Shang Dianzi, Sonnblick, Summit, Tahkuse, Trinidad Head, Varrio

Need model README file giving full detail of size assumptions with model


Models intending to submit results:

Following email questionnaire, many groups committed to submit results:

Model	Aerosol Dynamics # of a	erosol tracers	Contact
GLOMAP-bin	Bin-resolved (N,m)	~200	Dominick Spracklen (Leeds)
GLOMAP-mode	Modal (N,m)	30	Graham Mann (Leeds)
UKCA-UM	Modal (N,m)	30	Graham Mann (Leeds)
ECHAM-HAM	Modal (N,m)	25	Kai Zhang (MPI-Hamburg)
ECHAM-HAMMO	Z Modal (N,m)	25	Kai Zhang (MPI-Hamburg)
GISS-MATRIX	Moments (N,m)	60	Susanne Bauer (GISS)
EMAC [ECHAM-N	/IESSy] Modal (N,m)	30+	Kirsty Pringle (MPI-Mainz)
NCAR CAM4-MA	M Modal (N,m)	31/15	Xiaohong Liu (PNNL)
TM5	Modal (N,m)	25	Elisabetta Vignati (JRC)
CCCma AGCM4	PLA-bin (N,m)	240	Knut Van Salzen (Env Canada)
GISS-TOMAS	Bin (N,m)	~100?	Yunha Lee (Carnegie Mellon)
Nor-AGCM	Modal (N,m)	~20?	Trond Iversen (Norway Met.)
GEOS5-GOCART	Mode & bin (m-only)	~20	Peter Colarco (NASA GSFC)
ECHAM-HAM* &-	SALSA Mode (N,m), Bin (N,m) ~25, ~70	Risto Makkanen (Univ Helsinki)

Global Model of Aerosol Processes (GLOMAP)

- Global CTM forced by 6-hourly ECMWF winds
- Usually run at T42L31 (2.8°x2.8°) resolution
- Sectional aerosol scheme: 20 bins, 3 nm 20 μ m Modal scheme: 7 or 4 log-normal modes
- Chemistry usually driven by offline oxidants, now coupled to CTM chemistry
- Aerosol transport, new particle formation, growth by coagulation, condensation, cloud processing.
- Wet and dry deposition of gases & aerosol particles
- Emissions of DMS \rightarrow SO₂ \rightarrow H₂SO₄; monoterpenes \rightarrow biogenic SOA
- Primary emissions of sea salt, dust,
 - black & organic carbon (fossil and biofuels, vegetation fires)
- Nucleation via binary homogeneous nucleation of H₂SO4-H₂O and also now implemented boundary layer nucleation mechanism
- GLOMAP-bin : Spracklen et al. (2005), Spracklen et al (2008) GLOMAP-mode: Manktelow et al (2007), Mann et al (in prep, 2009).

Example model README file for GLOMAP-mode:

UNIVERSITY OF LEEDS

The following describes the all-aerosol-tracer information for GLOMAP-mode. Contact: Graham Mann (University of Leeds, U.K.) gmann@env.leeds.ac.uk

Model setup for AEROCOM simulations uses 7 log-normal modes Mode 1 is soluble nucleation with cpts SO4,POM Mode 2 is soluble Aitken with cpts SO4,BC,POM Mode 3 is soluble accumulation with cpts SO4,BC,POM,NaCl,dust Mode 4 is soluble coarse with cpts SO4,BC,POM,NaCl,dust Mode 5 is insoluble Aitken with cpts BC,POM Mode 6 is insoluble accumulation with cpts dust Mode 7 is insoluble coarse with cpts dust

Aerosol tracers then are 19 mmrtrnn values for components (nnn=01 to 19) 4 mmrtrnn values for water-content (nnn=20 to 23) 7 concenxx values for number conens (xx =01 to 07)

Aerosol tracer ordering in CMOR-compliant netCDF files are:

mmrtr01	 SO4	mmr	in	soluble	nucleation	mode
mmrtr02	 POM	mmr	in	soluble	nucleation	mode
mmrtr03	 S04	mmr	in	soluble	Aitken	mode
mmrtr04	 BC	mmr	in	soluble	Aitken	mode
mmrtr05	 POM	mmr	in	soluble	Aitken	mode
mmrtr06	 S04	mmr	in	soluble	accumulation	mode
mmrtr07	 BC	mmr	in	soluble	accumulation	mode
mmrtr08	 POM	mmr	in	soluble	accumulation	mode
mmrtr09	 NaCl	mmr	in	soluble	accumulation	mode
mmrtr10	 dust	mmr	in	soluble	accumulation	mode
mmrtr11	 S04	mmr	in	soluble	coarse	mode
mmrtr12	 BC	mmr	in	soluble	coarse	mode
mmrtr13	 POM	mmr	in	soluble	coarse	mode
mmrtr14	 NaCl	mmr	in	soluble	coarse	mode
mmrtr15	 dust	mmr	in	soluble	coarse	mode
mmrtr16	BC	mmr	in	insoluble	Aitken	mode
mmrtr17	 POM	mmr	in	insoluble	Aitken	mode
mmrtr18	 dust	mmr	in	insoluble	accumulation	mode
mmrtr19	 dust				coarse	
mmrtr20	 H2O	mmr	in	soluble	nucleation	mode
mmrtr21	 H2O				Aitken	
mmrtr22	 H2O	mmr	in	soluble	accumulation	
mmrtr23	 H2O	mmr	in	soluble	coarse	mode

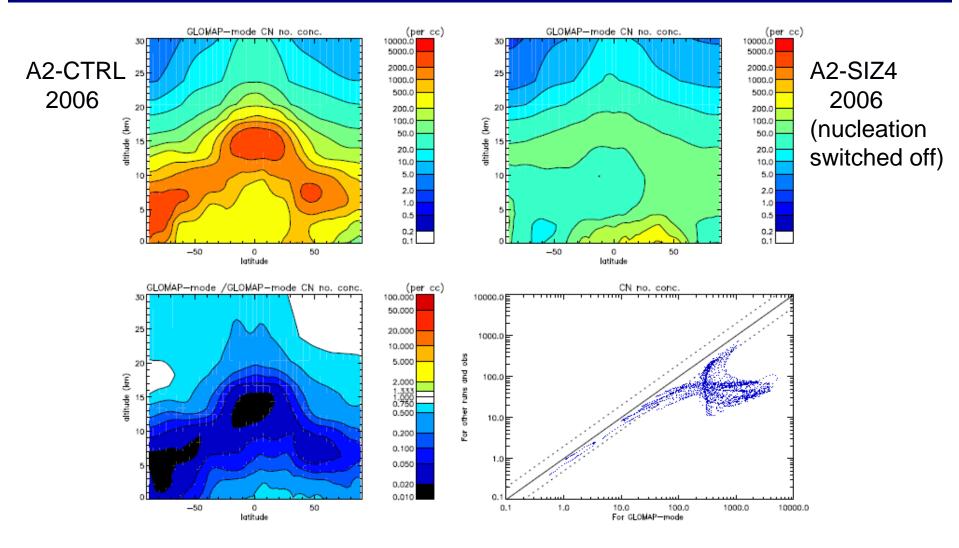
Example model README file for GLOMAP-mode:

```
nucleation
concenmode01 --- no. conc in soluble
                                                    mode
conccnmode02 --- no. conc in soluble Aitken
                                                    mode
conccnmode03 --- no. conc in soluble accumulation mode
concenmode04 --- no. cone in soluble coarse
                                                    mode
conconmode05 --- no. conc in insoluble Aitken
                                                    mode
concentrode06 --- no. conc in insoluble accumulation mode
conconmode07 --- no, conc in insoluble coarse
                                                    mode
Molar masses (mm) and densities (rho) of the aerosol components used for the mmr are:
                 kg/mol, rho=1769 kg/m3
SO4 : mm=0.098
BC : mm=0.012
                 kg/mol, rho=1500 kg/m3
POM : mm=0.0168 kg/mol, rho=1500 kg/m3
NaCl : mm=0.05844 kg/mol, rho=1600 kg/m3
dust : mm=0.100
                 kg/mol, rho=2650 kg/m3
                 kg/mol, rho=1000 kg/m3
H2O : mm=0.018
Geometric standard deviations (sigma) for the 7 modes are constant as:
sigma (soluble nucleation ) = 1.59
siqma (soluble Aitken
                           ) = 1.59
sigma (soluble accumulation) = 1.59
sigma (soluble coarse
                        ) = 2.00
siqma (insoluble Aitken
                           ) = 1.59
sigma (insoluble accumulation) = 1.59
sigma (insoluble coarse
                            ) = 2.00
Geometric mean diameter (Dpi) for mode i is calculated as:
Dpi<sup>3</sup>=6.0*dvoli/pi/explogsgsigmai
where explogsqsigmai=exp(4.5*alog(sigmai)*alog(sigmai))
     dvoli=sumj(mdij*mmj/(avc*rhoj))
and
     mdij=mmrtrnn*(mm da/mm)*(aird/conccni)
and
(nn is the index of the tracer mmr for mode i component j).
```

UNIVERSITY OF LEE

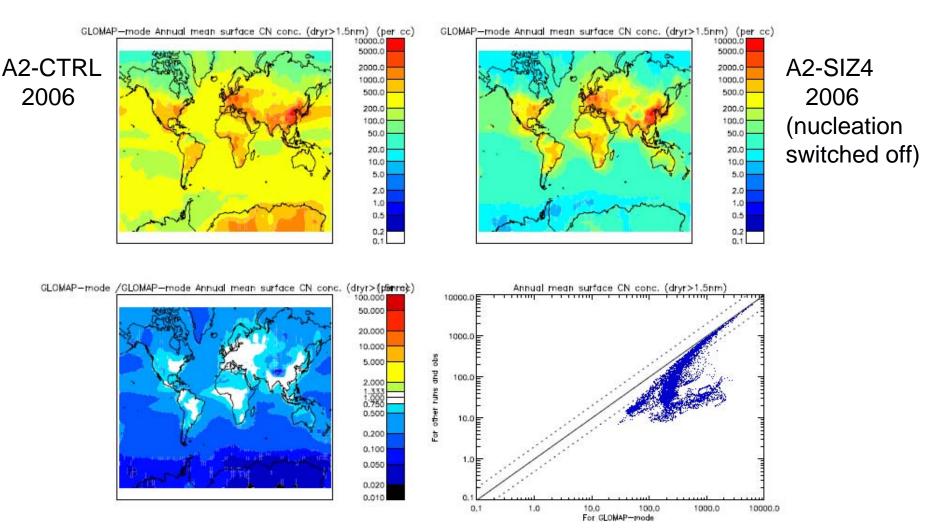
```
(conccni is the number concentration in mode i)
```

In addition to scoring vs observations, evaluate diversity in simulated influence of primaries/nucleation/coagulation/condensation on simulated CN, CCN, mass, AOD

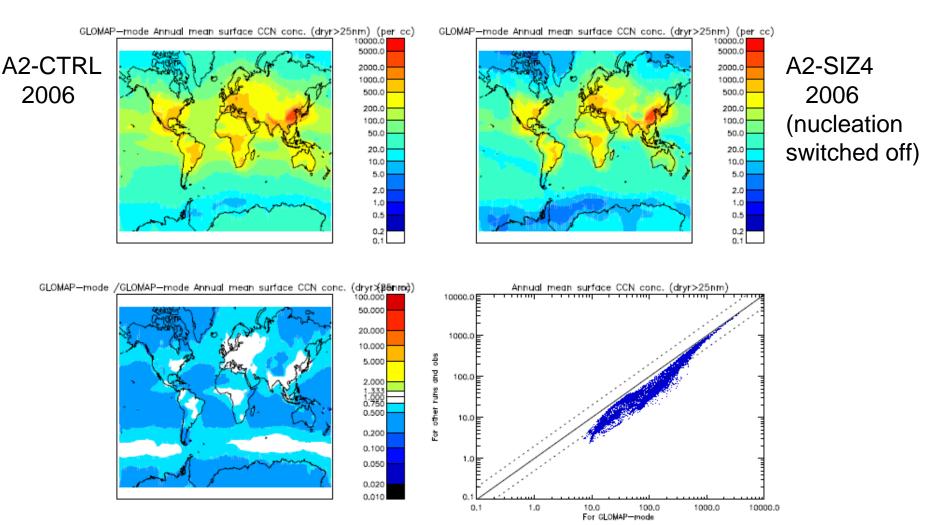

Table 2. Summary of ground level contribution from primary particles (PR), boundary layer nucleation (BLN) and upper tropospheric nucleation (UTN) to ground level total number (CN) and cloud condensation nuclei (CCN) concentrations at 0.2% and 1.0% supersaturations. The marine regions refer to west of North America (NAM), west of South America (SAM), west of North Africa (NAF), west of South Africa (SAF), and East of North-East Asia (NEA) (see Figure 7).

CN		CN	CCN(1.0%)			CCN(0.2%)		
Region	Tot $[\text{cm}^{-3}]$	PR-UTN-BLN [%]	Tot [cm ⁻³]	PR-UTN-BLN [%]	Tot [cm ⁻³]	PR-UTN-BLN [%]		
Total Global	1064	27-25-47	513	49-33-18	314	61-31-8		
Total Marine	758	19-33-48	331	41-44-15	204	52-40-9		
NAM	596	20-63-18	384	28-63-8	396	36-56-9		
SAM	567	14-41-45	273	31-58-11	148	41-53-7		
NAF	1003	12-31-57	413	28-52-20	414	36-48-15		
SAF	619	23-41-36	345	40-50-10	266	48-45-7		
NEA	1423	35-35-30	877	52-35-13	886	62-30-8		
Total Continental	1921	36-18-46	1024	57-23-20	625	69-23-7		
Europe	2611	47-11-42	1647	63-15-22	932	67-24-10		
Africa	1279	50-20-29	900	63-25-12	719	71-24-6		
N. America	2600	20-12-69	1079	40-24-36	554	51-32-17		
S. America	1713	36-15-49	922	61-25-14	613	71-26-3		
N. Asia	1119	22-26-53	554	38-34-28	288	56-31-13		
SE Asia	4543	46-14-40	2443	70-15-14	1384	83-13-4		
Oceania	1335	21-20-59	778	34-31-36	431	51-38-11		

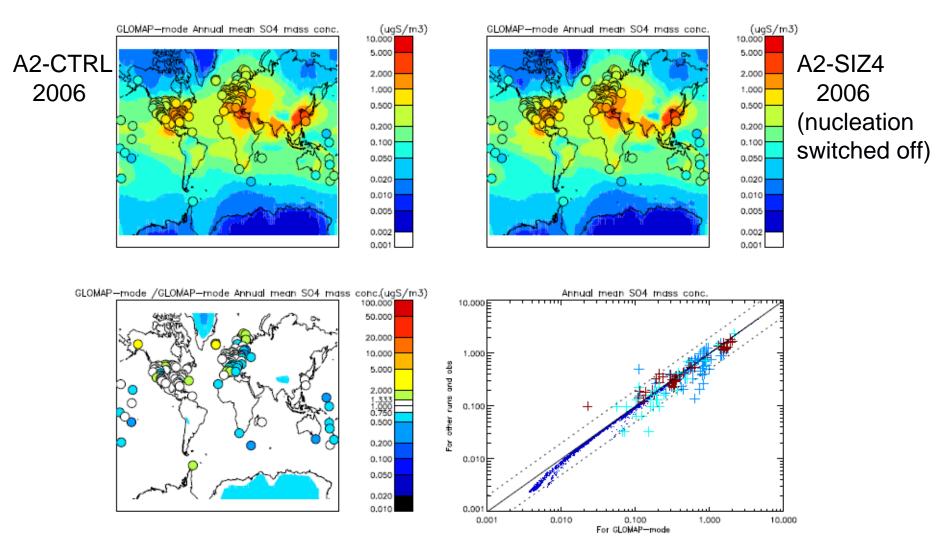
Merikanto et al (2009)


CN concentrations (GLOMAP-mode)

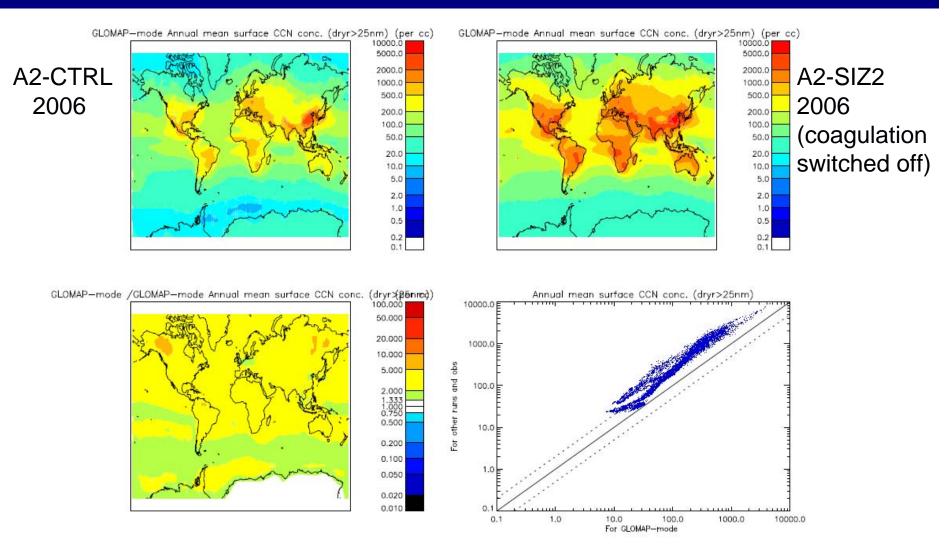
Switching nucleation off removes observed CN peak in Upper Troposphere


CN concentrations (GLOMAP-mode)

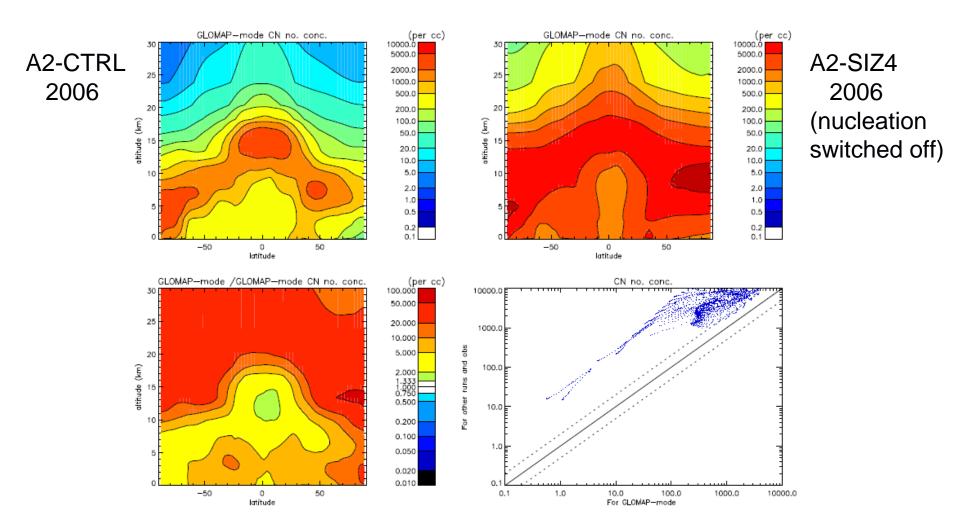
Secondary aerosol particles > 50% of surface CN in almost all marine regions Continental CN mostly from primary emissions (no BL nucleation in these runs).


CCN concentrations (GLOMAP-mode)

30-50% surface CCN in most MBL regions from secondary aerosol Sea-spray dominated regions and continental regions dominated by primaries.


SO4 mass concentrations (GLOMAP-mode)

Switching off nucleation makes no difference to simulated mass concentrations


CCN concentrations (GLOMAP-mode)

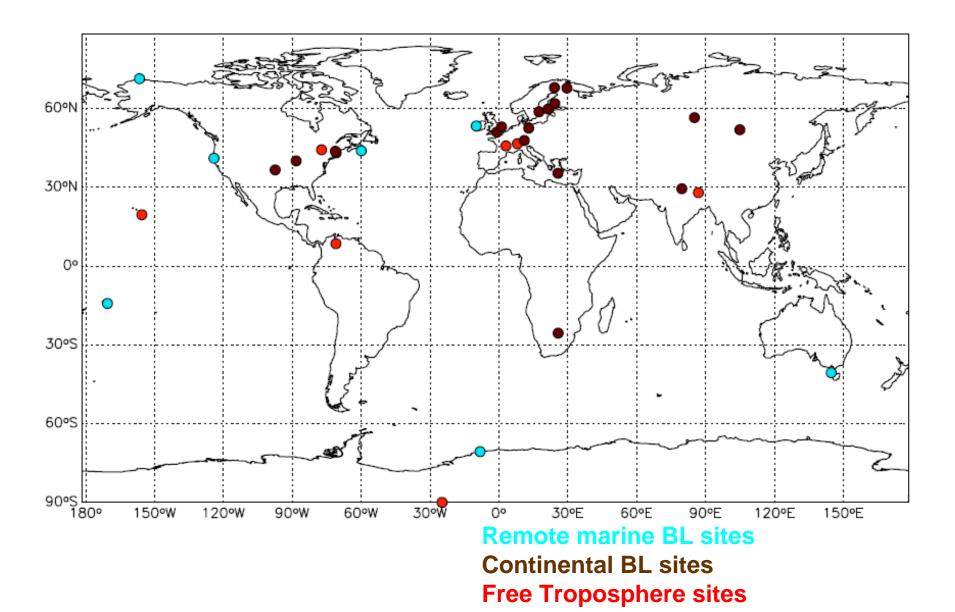
Switching coagulation off increases CCN concentrations by > 100%.

CN concentrations (GLOMAP-mode)

Switching coagulation off strengthens observed CN peak in Upper Troposphere Increases CN concentrations everywhere by ~ factor 2-10

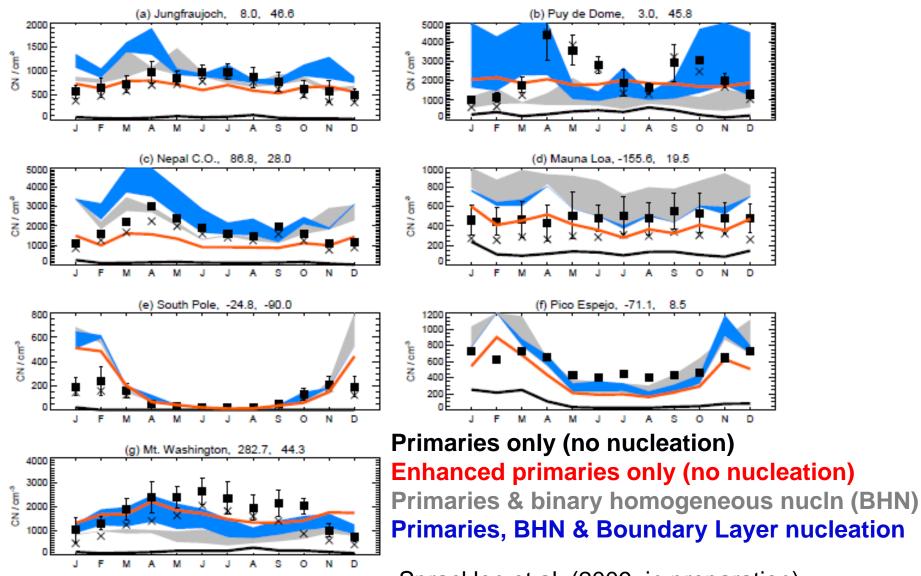
Sites with CN observations over several years

Station Name	Location	Altitude	Observation	Min. cutoff	Reference
		(m)	period	diameter (nm)	
			Free troposphere		
Jungfraujoch	8.0E, 46.6N	3580	1995-1999, 2003-2007	10	Weingartner et al. (1999)
Puy de Dome	3.0E, 45.8N	1465	2005-2008	3	Venzac et al. (2009)
Nepal C.O.	86.8E, 28.0N	5079	2007-2008	10	Venzac et al. (2008)
Mauna Loa	155.6W, 19.5N	3397	1975-2000	10	Bodhaine (1996)
South Pole	24.8W, 90S	2841	1974-1999	10	
Pico Espejo	71.1W, 8.5N	4775	2007-2009	10	
Mount Washnigton	71.3W, 44.3N	1910	2002-2005	10	
		Μ	larine boundary layer		
Mace Head	350.1E, 53.3N	0	2000, 2002-2007	10	O'Dowd et al. (1998)
Neumayer	8.3W, 70.7S	42	1993-2006	10	Weller and Lampert (2008)
Point Barrow	156.6W, 71.3N	11	1994-2007	10	Bodhaine (1989)
Samoa	170.6W, 14.2S	77	1977-2006	10	
Trinadad Head	124.2W, 41.1N	107	2002-2007	10	
Cape Grim	144.7E, 40.6S	94	1996-2007	3	Gras (1995)
Sable Island	60.0W 43.9N	5	1992-2000	10	

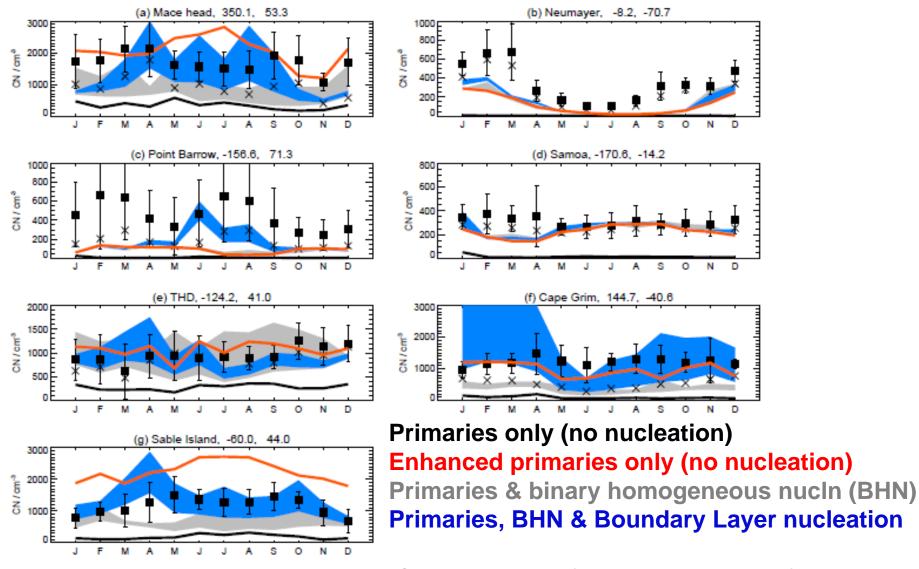

Spracklen et al, (2009, in preparation)

Sites with CN observations over several years

Station Name	Location	Altitude	Observation	Min. cutoff	Reference		
		(m)	period	diameter (nm)			
Continental boundary later							
Hyyti¨al¨a	24.3E, 61.9N	180.	2000-2004	3	Aalto et al. (2001)		
Pallas	24.1E, 68.0N	340.	2000-2004, 2007	10	Komppula et al. (2003)		
Finokalia	25.7E, 35.3N	0	1997, 2006-2007	10			
Hohenpeissenberg	11.0E, 47.8N	995	2006-2007	3	Birmili et al. (2003)		
Melpitz	12.3E, 51.2N	86	1996-1997, 2003	3			
Bondville	88.4W, 40.1N	213	1994-2007	10			
Southern Great Plains	97.5W, 36.6N	320	1996-2007	10			
Tomsk	85.1E, 56.5N		2005-2006	3	Dal Maso et al. (2008b)		
Listvyanka	104.9E, 51.9N		2005-2006	3	Dal Maso et al. (2008b)		
Harwell	359.0E, 51.0N	60	2000	10			
Weybourne	1.1, 53.0N	0	2005				
Botsalano	25.8E, 25.5S	1424	7/2006-6/2007	10	Laakso et al. (2008)		
India Himilaya	79.6E, 29.4N	2180	2005-2008	10	Komppula et al. (2009)		
Aspvreten	17.4E, 58.8N	25	2000-2006	10	Dal Maso et al. (2008a)		
Ut "o	21.4E, 59.8N	8	2003-2006	7	Dal Maso et al. (2008a)		
Varri o	29.6E, 67.8N	400	1998-2006	8	Dal Maso et al. (2008a)		
Thompson Farm	289.1E, 43.1N	75	2001-2009	7	Ziemba et al. (2007)		
Castle Springs	71.3W, 43.7N	406	2001-2008	7			

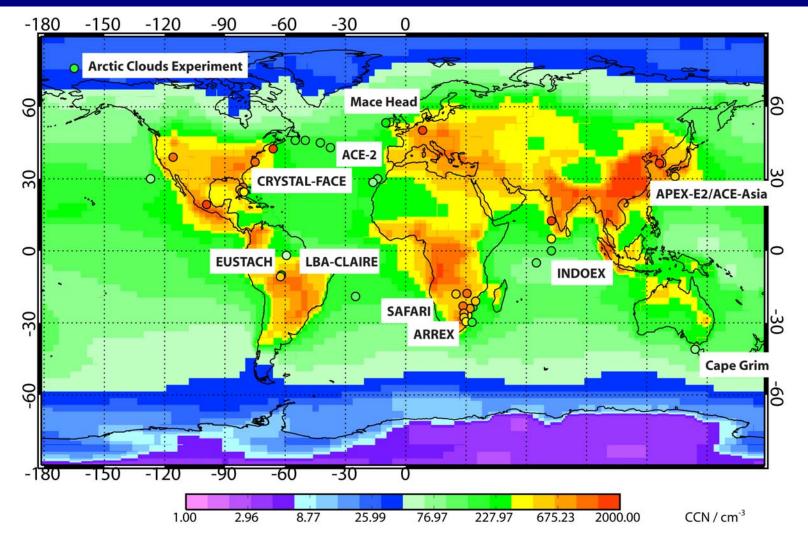

Sites with CN observations over several years

GLOMAP CN being evaluated against observations at GAW and ARM sites

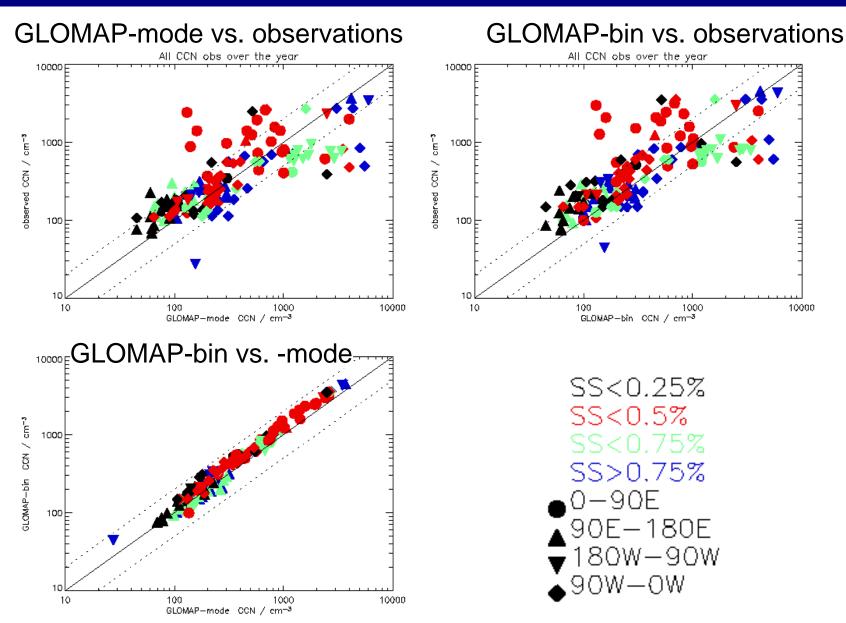


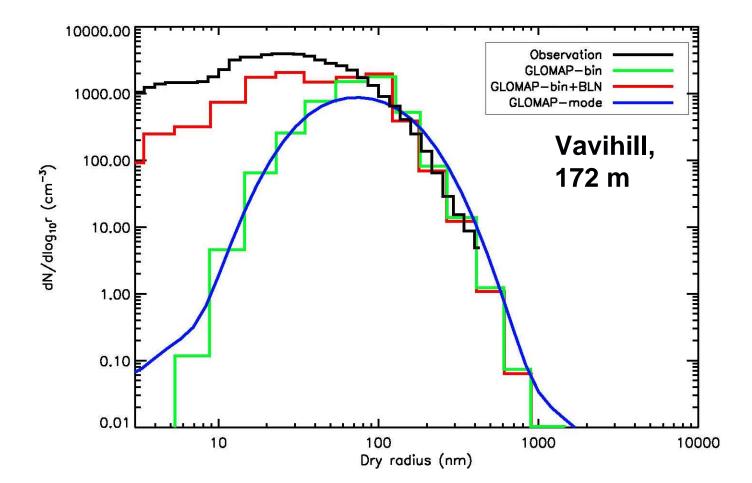
Spracklen et al, (2009, in preparation)

GLOMAP CN being evaluated against observations at GAW and ARM sites

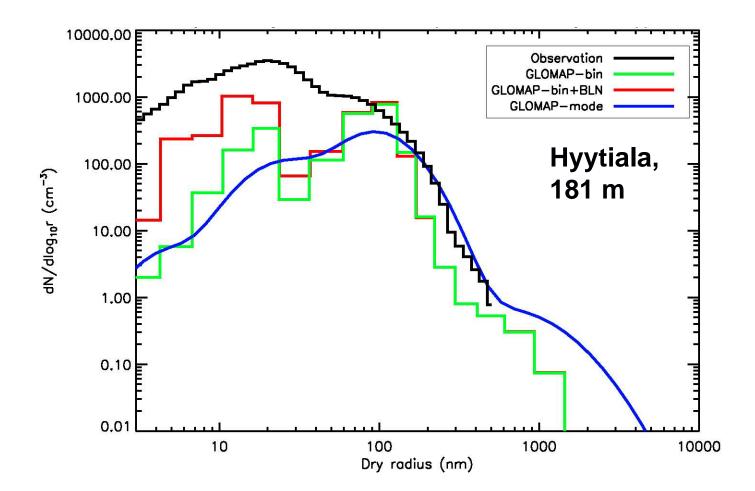


Spracklen et al, (2009, in preparation)

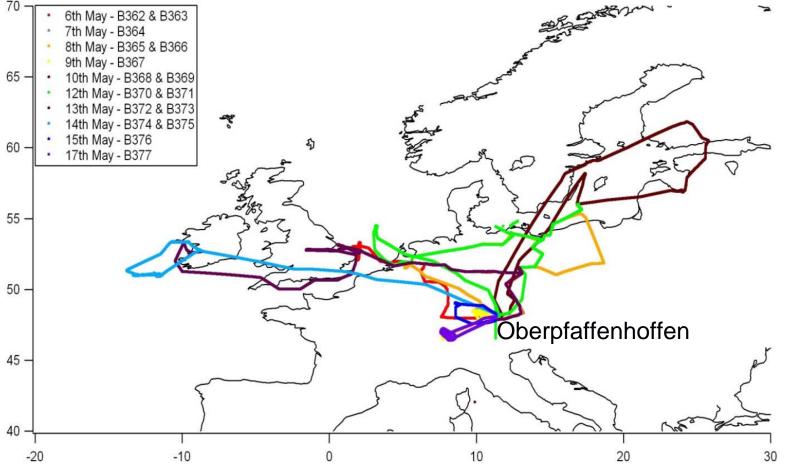

GLOMAP CCN being evaluated against a range of worldwide observations

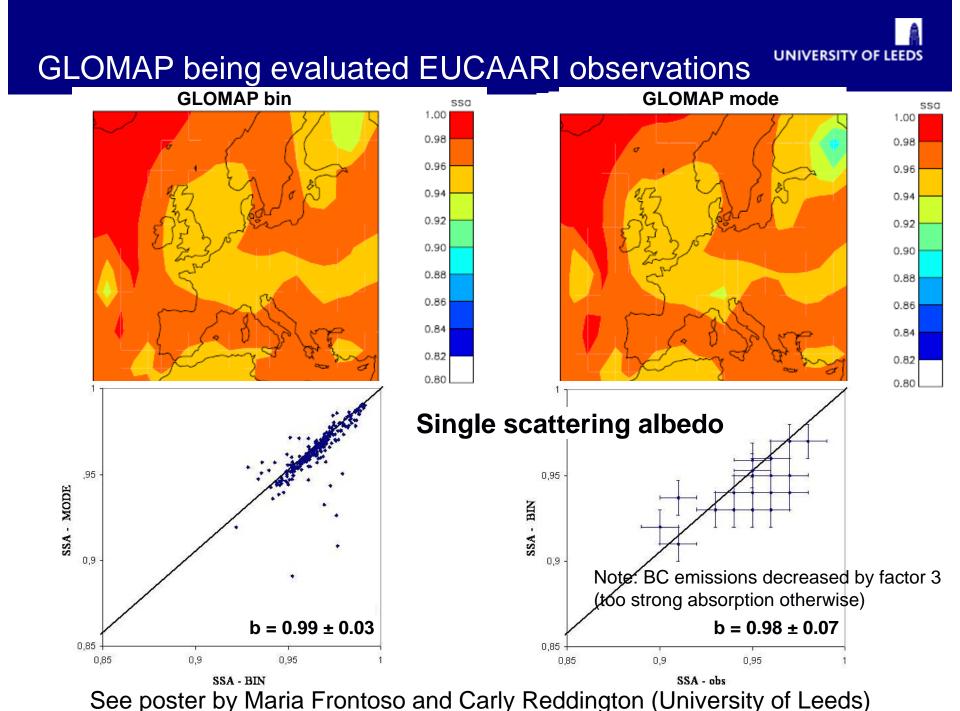


Note: map shows CCN at 0.2% supersaturations. Coloured circles show observations at range of supersaturations


GLOMAP CCN being evaluated against a range of worldwide observations

GLOMAP size distributions being evaluated vs DMPS observations European EUSAAR supersites


GLOMAP size distributions being evaluated vs DMPS observations European EUSAAR supersites


GLOMAP being evaluated EUCAARI observations

May 2008 EUCAARI-LONGREX flights – track evolution of aerosol properties (DLR Falcon, UK FAAM BAe146) over Europe (N-S and E-W transects)

UNIVERSITY OF LEEDS

UNIVERSITY OF LEEDS GLOMAP being evaluated EUCAARI observations **GLOMAP** bin **GLOMAP** mode aod aod 0.20 0.20 0.18 0.18 0.16 0.16 0.14 0.14 0.12 0.12 0.10 0.10 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0.00 0.00 0.3 0,3 Aerosol optical depth, AOD @ 550 nm AOD @ 550 nm MODE AOD @ 550 mm BIN 2 0,2 0,1 $b = 0.993 \pm 0.018$ $b = 0.40 \pm 0.004$ 0,1 0.2 0,3 0,1 0.2 0,3 AOD @ 550 nm obs AOD @ 550 nm BIN

AEROS Aerosol Model Uncertainty project

<u>Ae</u>rosol Model <u>Ro</u>bustness and <u>S</u>ensitivity study for improved climate and air quality predictions 3y Leeds/Oxford NERC project 2010-2012

- Develop <u>techniques for sensitivity and uncertainty analysis</u> of complex aerosol models (structural and parametric uncertainty)
- Quantify the most important factors controlling prediction diversity and biases against observations
- <u>Evaluate models</u> against synthesised aircraft, ground and remote observations from recent campaigns
- Define an <u>appropriate level of model complexity</u> and *enable future* model development to be prioritised.

Close collaboration with the Met Office and AEROCOM Establish links with MUCM project GLOMAP, UKCA and ECHAM-HAM models

Summary

Original timeline for microphysics has slipped, but plan still the same.

- -- Please submit your model's conccnxx and mmrtryy files to the AEROCOM server on 3D-M, 1D-D, 0D-H use CMOR tables on website.
- -- Please also provide your model's README file with instructions with order of aerosol tracers & how to calculate size distribution from your model tracers.

All-aerosol-tracer 3D-M, 1D-D, 0D-H data for GLOMAP-mode submitted to AEROCOM data server for A2-CTRL-2006 simulation

- -- Please copy your models files over with A2-CTRL-2006 as soon as possible.
- Assembled range of CN and CCN datasets at Leeds can make available to AEROCOM for data server (assuming data PIs happy with this).
- Wide range of new size distribution datasets from EUCAARI and EUSAAR now becoming available to help constrain models

Will compare each A2-CTRL vs current set of "number observations" in Leeds.

Then start to document diversity in simulated influence of microphysics on CCN, AOD using model sensitivity simulations A2-SIZ1,SIZ2,SIZ3,SIZ4 by end 2009.

New project AEROS starting March 2010 to quantify sources of model uncertainty at process level using aircraft, ground, remote-sensed and satellite observations over EUCAARI and EMEP intensive periods.