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Climate Simulations Setup

1. Transient simulations for 1890 to 2000, with on-line aerosols-gas

-phase chemistry fully coupled to deep ocean. Simulations are:
a) STD (direct, BC-albedo)
b) IE (direct, BC-albedo, indirect)
c) no BC-albedo (direct)

Spin-up: a) 1st used a well-equilibrated 1850 simulation with off-line ozone
/aerosols from Hansen et al. (2007), GISS AR4.

b) Interactive species/effects were turned on and the model spin-up
extended another 100 years to equilibrium.

Ensemble of 3-5 transient simulations, with prescribed long-lived
greenhouse gases, volcanic aerosols, solar and land-cover changes.
Aerosol (mass), gases: sulfur, BC/OC, sea-salt, dust, nitrate, ozone
chemistry

This study is part Il of Koch et al., J. Clim., 2009:
Q-flux equilibrium simulations for 1890 and 2000. Slab ocean, on-line
aerosols.
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Model snow grain
size = f(snow age,
air temperature).
Marshall (1989)



Aerosol Indirect Effect (AIE), (warm clouds only)
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Emissions Trends
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. Emissions are EDGAR (van Aardenne et al., 2001;
EDGAR32 _FT), except BC/OC from Bond et al.
(2006), and biomass burning from GFED (scaled to 1/2
in tropics for 1880, increasing linearly to 2000), natural
sources.
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BC, sulfate model trends vs McConnell et al. Greenland ice core data
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SO2 Emissions (Smith et al., 2004)

Global Anthropogenic Sulfur Emissions
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Figure 1-Global sulfur dioxide enussions from this study (thick line) and several other recent estimates (see text). Note

that the Lefohn ef al. estimate does not include all anthropogenic emissions sources. References not shown on the cart
are: GEIA (Benkovitz et al.1996); EDGAR 2.0 (Olivier et al 1996); EDGAR 3.2 (Olivier and Berdowski, 2001);

EDGAR-HYDE (Van Aardenne ef al. 2001); and SRES (Nakicenovic and Swart 2000).



BC Arctic deposition

Compares decently with field data for 1980s, 2000s
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gure 2
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Peak in 1950s

SCP (spherical carbonaceous
particles) from Svalbard
(Hicks and Isaksson, 2006)
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AOD changes
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Dimming/brightening changes
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1890s-1990s

TOA forcing changes
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TOA forcing changes
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TOA forcing changes
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STD model (no IE yet) global Surface Air Temperature (SAT)

STD warms the right amount, without the indirect effect.
Note: Hansen et al. 2007 needed -1Wm-
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But model is too warm mid-century, so
maybe IE can help this. Put in IE from
our Q-flux model experiments...



SATC

First try: IE model Surface Air Temperature trend
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First try: IE model Surface Air Temperature trend
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First aerosol indirect effect (IE1) experiment Failed!

1. Qflux had 0.8°C cooling, certainly more than we need.
2. Also the cloud forcing is stronger in the transient run...
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Cloud droplet number concentration (cm

IE2: weaker indirect effect
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condensed on
other particles)



SATC

STD, IE trend in Surface Air Temperature

15.4

1525

156.0

14.8 -

146 7] PN

14.4 -

 Observed
AA|STD Model
A ;I-W\'/‘rv\ \ :
AN it 7 p |STD-BC
7 l | STD+IE1
\
| STD+IE2

14.2
1880

1900

1910

1920

1930

1940

I I
1950 1960 1929// 1980 1990 2000

|[E2 better but still cool near the end



Cloud forcing change (1990-1890) for Q-flux, IE1 and 1E2
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Qflux IE1 |IE2: Decreased sulfate effect on
CDNC gives smaller cloud
forcing change, more like Q
-flux.

We show results now for IE2



Observed Surface Air Temperature (SAT) changes
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First part of century, the |IE run does
better than the STD run. But both
are too cold near the end.



Aerosol effects on Surface Air Temperature (SAT) changes
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1890s-1990s

Model cloud changes
changes, STD vs IE
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|E clouds
increase
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IE: cloud cover increases slightly,
(but bigger loss in the Arctic)
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1890s-1990s

Snow/ice cover changes
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IE only With |E

BC-alb only

Model snow/ice cover changes
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STD: “Mitigation” Sensitivity studies 1970-2000
Starting in 1970 we branch off 3 cases from STD and run to 2000:

1. BC fossil fuel, biofuel = 0; biomass burning BC, OC emissions are
1890 (-0.3 W/m2)

2. Pollution sulfur = 0 (+0.4 W/m2)

3. Long-lived GHG concentrations remain at 1970 levels (-1 W/m2)

(ensembles of 3 each are performed)



Global Surface Air Temperature Trend
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Climate changes for mitigation experiments
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Conclusions

. BC, BC-albedo are important warmers and snow/ice melters
especially up to 1950s. However later in the century reduced
BC emissions from Europe, North America contribute to
high latitude cooling. Over century BC-albedo effect caused
20% of Arctic snow/ice loss.

Sulfate and the indirect effect caused strong dimming and
cooling from 1940s to 1980s, and maybe too much cooling
late 1n century. Some decline 1n sulfur from Europe
contributes to warming (“unmasking”) in final decades.

. Our sulfur emissions are possibly to blame for failure to
warm at end of century, since we jumped from EDGAR
-HYDE (1890 to 1980) to EDGAR32 (1990 and 2000).
Smith et al. (2004) has better shape (ARS emissions).
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Conclusions

4. The IE cloud forcing 1s stronger in the transient deep-ocean
simulations than 1t was 1n Qflux simulations. We weakened the
indirect effect using a pseudo-microphysical justification. We
will repeat these experiments using our aerosol microphysical
scheme (MATRIX).

Transient climate 1s a good test (challenge) for the indirect effect!

5. Tropospheric ozone seems to be the strongest positive short
-lived forcer 1n the Arctic during the last half of the century.

6. “Mitigation”: Reduction of sulfur causes strong warming, while
reduction of BC or stabilization of GHG has small (short-term)
impact. This may be due to thermal inertia in the system - it is
hard to turn the climate around. GHG stabilization seems a
more effective cooler than BC reduction because it enhances
cloud cover (in our model).



