Estimating aerosol emissions from variational assimilation

N. Huneeus ⁽¹⁾, F. Chevallier ⁽¹⁾ and O. Boucher ⁽²⁾

(1) Laboratoire des Sciences du Climat et de l'Environnement, France(2) Met Office, Hadley Centre, Exeter, United Kingdom

LMDz 3.3.R

LMDz 3.3.R

Simplified Aerosol Model (SPLA)

8th AeroCom Workshop, Princeton, 5-7 October 2009

(Huneeus et al., accepted)

Validation of SPLA (seasonal variability)

Validation of SPLA (daily variability)

8th AeroCom Workshop, Princeton, 5-7 October 2009

AER

Control Vector

Emission parameters defined by region :

- Sulfur Emissions (6)
- Biomass Burning (6)
- Combustion of fossil fuels (6)
- Sea salt fine & coarse (Global, 2)
- Desert dust fine & coarse (2x10)
- Conversion from sulfur to sulfate (5)

« Observations » vector

Daily means of :

- MODIS total optical depth at 550 nm
- MODIS fine mode optical depth at 550 nm

Emission Regions

LONGITUDE

Dust Regions (Fine & Coarse)

Sea Salt Regions (Fine & Coarse)

Adjoint of Automatic differentiation **TAPENADE**

Adjoint : Perturbations in the input with respect to perturbations in the output \Box

- 2 days

- 5 days

SPLA & Adjoint

Global assimilation system used in estimation of gaseous emissions (Chevallier et al., 2005)

Inversion

Observations

Fine mode AOD

5 Iterations

Ö

A priori

Inversion

Observations

Total AOD 5 Iterations

8th AeroCom Workshop, Princeton, 5-7 October 2009

Inversion - Total AOD

Direct Model

$$E_{\text{species}} = \sum_{i} S_{i} \times E_{\text{orig}}^{i}$$

i= Aerosol species

Adjoint Model

$$S_i^* = S_i^* + E_{orig}^i \times E_{species}^*$$

 \Longrightarrow

Definition of background error covariance matrix

$$J = (x - x_{b})^{T} B^{-1} (x - x_{b}) + (y - H[x])^{T} R^{-1} (y - H[x])$$

Conclusions

- Derivation of a simplified model groupes 24 original species into 4
- Simplified model reproduces LMDz in monthly variability and is within the variability of AERONET
- More dificulties in reproducing the AERONET daily variability
- Introduced in global assimilation system
- Assimetry in the inversion

Dust Intercomparison

- Definition of stations is now observation based
- Separating between dusty days and days with dust in mixture

 $\alpha < 0.4$ Natural Aerosols

- Angstrom Exponent ~
 - α $\tilde{1}$ Mixture

 $\alpha > 1.2$ Anthropogenic Aerosols

•Next step Paper