

AEROCOM Supersites experiment

Julian Wilson Climate Change Unit Institute for Environment and Sustainability

with thanks to WDCA contributors, especially John Ogren, Uwe Kaminski, Margerete Fricke, Chris Wehrli, J-P Putaud, S. dos Santos, G. Zibordi , Stefan Kinne & the AEROCOM community & Elisabetta Vignati & Matthias Karl

Introduction to WDCA

- Using *in-situ* observations of aerosol physical properties to understand aerosol models.
- Observed relationship between RH & Aerosol optical properties
- BC, E. Vignati & M. Karl model results (tomorrow?)

http://wdca.jrc.it/

The GAW Aerosol program

The SAG Aerosol recommends that the GAW aerosol program include:

- for regional stations any one, or more of the following:
 - optical depth
 - mass (preferably in two size fractions)
 - major chemical components in two size fractions
 - light scattering coefficient
- for global stations as many as possible of the following:
 - optical depth
 - mass in two size fractions
 - major chemical components in two size fractions
 - light scattering & hemispheric backscattering coefficients at various wavelength
 - light absorption coefficient
 - aerosol number concentration
 - cloud condensation nuclei number concentration at 0.5% supersaturation
 - diffuse, global and direct solar radiation
- intermittently:
 - aerosol size distribution; detailed size fractionated chemical composition; dependence of aerosol properties on relative humidity; CCN spectra at various supersaturations; LIDAR measurements and other altitude profiles.

Aerocom Lille 25//10/2007

oint Research Centre

Organisations that have contributed data to WDCA

	PMOD/WRC	Physikalisch World Radia	
	ESRL	NOAA Earth	
Ð	MSC	Meterologic	
ntı	DWD HOP	Deutscher Meteorologi	
Ge	DWD LIN	Deutscher Observatory	
	JMA	Japanese M	
	NILU	Norwegian	
2	PSI	Paul Scherr	
5	NUI,G	National Un	
Se	UM-RSMAS	University o Atmopheric	
0	СНМІ	Czech Hydr	
	FMI	Finnish Met	
	MDE	Ecole de Mi	
2	UBA	Umweltbun	
0	EPA	Irish Enviro	
	JRC	Joint Resea	

PMOD/WRC	Physikalisch-Meteorologische Observatorium Davos / World Radiation Centre, Switzerland				
ESRL	NOAA Earth System Research Laboratory (ex CMDL)				
MSC	Meterological Service of Canada				
DWD HOP	Deutscher Wetterdienst, Hohenpeissenberg Meteorological Observatory				
DWD LIN	Deutscher Wetterdienst, Lindenberg Meteorological Observatory				
JMA	Japanese Meterological Agency				
NILU	Norwegian Institute for Air Research				
PSI	Paul Scherrer Insititute, Switzerland				
NUI,G	National University of Ireland, Galway				
UM-RSMAS	University of Miami, Rosenstiel School of Marine and Atmopheric Sciences				
СНМІ	Czech Hydrometeorological Institute				
FMI	Finnish Meteorological Institute, Air Quality Research				
MDE	Ecole de Mines de Douai, France				
UBA	Umweltbundesamt, Langen, Germany				
EPA	Irish Environmental Protection Agency, Ireland				
JRC	Joint Research Centre, Ispra, Italy				
lfT	Institute for Tropospheric Research, Leipzig				
BAM	Australian Bureau of Meteorology				

IMPROVE	VE Interagency Monitoring of Protected Visual Environments, USA		
UH-SOEST	University of Hawaii, Department of Oceanography		
NERI	National Environmental Research Institute, Denmark		
UJF	University Joseph Fourier, France		
FMI	Finnish Meteorological Institute		
CSIRO	Commonwealth Scientific and Industrial Research Organisation, Australia		
AWI	Alfred Wegener Institute, Bremerhaven, Germany		
RIVM	Netherlands National Institute of Public Health and Environmental Protection,		
IMGW	Polish Institute of Meteorology and Water Management		
SHMI	Slovak Hydrometeorological Institute		
DGCEA	Direccion General de Calidad y Evaluacion Ambiental del Ministerio de Medio Ambiente, Spain		
IVL	Swedish Environmental Institute		
ЕМРА	Swiss Federal Laboratories for Materials Testing and Research		
LHMA	Latvian Hydrometeorological Agency		
AEA Tech AEA Technology, National Environmental Technology Centre, UK			

	Data								
	Class	AOD	LScat	Labs	CN	Size dist	PM Chem	PM	CCN
Alert	1		2004	1989-2006 (a)	2004		1992-2005		
Ny Alesund	1/3	2003-2005	-2006	-2006	-2006	2001-2004(-2006)	1989-2004 (-2006)		
Point Barrow	2		1976-2006	1988-2006	1976-2006		1997-2003		
Pallas	1/3		2000-2005 (-2006)	(-2006)	1996-2004 <i>(-2006)</i>	2001-2004(-2006)	(-2006)		
Mace Head	1/3	2001-2005	2000-2002 (-2006)	1989-2002 (2006)	1991-4, 2000-2005(-2006)	2002-2006	1992-1994 (-2006)		
Hohenpeissenberg	1	1993-2005	1999-2005 (-2006)	-2006	1995-2005 (-2006)	2001-2005 (-2006)	1997-2002 (-2006)		
Zugspitze	1	2003-2004							
Jungfraujoch	1/3	1999-2005	1995-2006	1995-2006	1995-2006	1997-1998	1995, 1999-2001 (-2006)		
Mount Waliguan		(b)							
Izana	1	2001-2005					1992-1995		
Minamitorishima	1	2003-2004							
Assekrem									
Mauna Loa	2	2000-2005	1975-2006	1990-2006	1975-2006		1992-1995		
Mount Kenya									
Bukit Kototabang									
Arembepe									
American Samoa	2		1977-1991		1977-2006				
Cape Point							1992-1996		
Amsterdam Island									
Lauder									
Cape Grim	1				2003		1983-1996		
Ushuaia									
Neumayer	1		2003-2006		1993-2006				
South Pole	2		1979-2006	1987-2006	1974-2006				

global station/key parameter	1 = narsto by originator	NARSTO format at WDCA	GAWSIS but not WDCA	neither GAWSIS nor WDCA	1 = narsto by originator
	2 = narsto by WDCA		EUSAAR to process at NILU		2 = narsto by WDCA
	3 = narsto by CREATE	(a) submitted as BC (ng.m-2)	(b) broad band pyriheliometer		3 = narsto by CREATE

Integration of Physical Chemical Aerosol Properties

Why?

outcome of AEROCOM optical properties & forcing evaluations: comparison with AOD permits model tuning as it leaves a lot of degrees of freedom.

How?

In a comparison with *in-situ* chemical & optical properties the only variables are *aerosol mass* & extinction efficiencies for the component species. Concurrent *Scattering* and *Absorption* observations from c20 sites globally with consistent methods (humidity control) => data set where the uncertainties can be evaluated & at most of these AOD &or chemical composition are available.

Fig 2 from Kinne et al., 2006 - AEROCOM optical properties

Aerocom Lille 25//10/2007

Joint Research Centre

AEROCOM Optical Properties (Kinne et al., 2006)

"At 0.11 to 0.14, simulated aot values are at the lower end of global averages suggested by remote sensing from ground (AERONET ca. 0.135) and space (satellite composite ca. 0.15). More detailed comparisons, however, reveal that larger differences in regional distribution and significant differences in compositional mixture remain. Of particular concern are large model diversities for contributions by dust and carbonaceous aerosol, because they lead to significant uncertainty in aerosol absorption (aab)".

Table 4.

MAX/MIN DUST = 11 (1.4) MAX/MIN BC = 6.6 (1.8) MAX/MIN WATER = 7.1 (3.1) - 9 models WATER 28 - 79% of total (AOT)

$$b_{\text{extp}} = b_{\text{scap}} + b_{\text{absp}}$$

 $\omega_0 = b_{scap}/b_{extp}$

•Malm et al (1997) & others have shown that the differences in refractive index and scattering and absorption efficiencies from using external vs internal aerosol mixing models c 10%.

i.e.
$$\boldsymbol{b}_{extp} = \Sigma \alpha_{scai} \boldsymbol{m}_{i} + \alpha_{absi} \boldsymbol{m}_{i}$$

Where α_{si} and α_{si} are the specific scattering and absorption efficiencies for aerosol species i.

Water soluble aerosol species have varying patterns of hygroscopic growth – changes both scattering (aerosol water is a scatterer) and absorption ('magnifying' effect of increasing scattering material).

Dry avoids water vapour effects in the model, for in-situ comparison & treatment of water in the models is very variable & uncertain.

Dry reduces the scattering response in absorption measurements (2% of scattering signal, Bond et al, 1999) – reduces the uncertainties in the measurements.

Currently in calculating extinction, use BC models that are 'validated/constrained' by comparison with optical Equiv. BC data (specific absorption coeff.). In calculating the BC contribution to specific extinction other optical properties likely to be assumed -> systematic & variable bias effectively a function of instrument calibration. If instead absorption measurements are only compared to calculated absorption, single use of specific absorption coeff. in the model calculation.

Systematic and Variable Bias

'dry' aerosol extinction coefficient sites

CMDL pack (TSI3563+PSAP@ controlled humidity) – *in-situ* 550nm extinction co-efficient @ STP 3563/903 Neph + narrowband absorption – *in-situ* 550nm extinction co-efficient @STP feasible - 3563/903 Neph + broadband absorption – uncertain *in-situ* extinction "co-efficient"-

CIMEL Sunphotometer co-located ⇔ PFR Sunphotometer co-located ⇔

SP01A Sunphotometer co-located 🌣

Aerocom Lille 25//10/2007

Institute for Environment and Sustainability

Region	Station	AOD	Light Scattering (nm)	Light Absorption (nm)	RH
Arctic	Alert (to end 2005)		450, 550, 700 (3563)	550 (PSAP)	<40%
Arctic	Ny Alesund	CIMEL, PFR, BSRN	450, 550, 700 (3563)	450, 550, 700 (CUSTOM)	Ambient
Arctic	Point Barrow	CIMEL, SPO1A, BSRN	450, 550, 700 (3563)	550 (PSAP)	<40%
Europe	Mace Head	PFR	450, 550, 700 (3563)	broadband (AE-9)	<45%
Europe	Hohenpeissenberg	PFR	450, 550, 700 (3563)	532 (MAAP), & Broadband AE-10)	<45%
Europe	Finokalia	CIMEL (Heraklion)	530 (903)	550 (PSAP)	Unknown
Europe	Ispra	CIMEL	450, 550, 700 (3563)	370, 450, 571, 615, 660, 880, 950 (AE-31)	Ambient
Americas	Bondville	BSRN	450, 550, 700 (3563)	550 (PSAP)	<40%
Americas	Lamont SGP	CIMEL, BSRN	450, 550, 700 (3563)	550 (PSAP)	<40%
Americas	Sable Island (to 2000)		450, 550, 700 (3563)	550 (PSAP)	<40%
Americas	Trinidad Head	CIMEL, BSRN?	450, 550, 700 (3563)	550 (PSAP)	<40%
Americas	Cape San Juan	CIMEL	450, 550, 700 (3563)	550 (PSAP)	<40%
Asia	Anmyeon-do	CIMEL	450, 550, 700 (3563)	broadband ?	Unknown
Asia	Kosan (2000-2001)	CIMEL	450, 550, 700 (3563)	550 (PSAP)	<40%
Africa	Cape Point (2006+)		450, 550, 700 (3563)	550 (PSAP)	<40%
Antarctic	S. Pole	SPO1A, BSRN	450, 550, 700 (3563)	none	<40%
Antarctic	Neumayer	BSRN	450, 550, 700 (3563)	broadband	Unknown
F. Trop	Jungfraujoch	PFR	450, 550, 700 (3563)	370, 450, 571, 615, 660, 880, 950 (AE-31)	T=25 C
F. Trop	Mount Waliguan		450, 550, 700 (3563)	550 (PSAP)	<40%
F. Trop	Mauna Loa	CIMEL	450, 550, 700 (3563)	550 (PSAP)	<40%

PFR = 368, 412, 500, 862 nm, SP01A = 412,500,675, 862 nm,

CIMEL = 1020, 870, 675, 440, 936, 500, 340, 380 nm RED = data set collected & being processed, blue = negotiating

CMDL Data Summary (Delene & Ogren, 2002)

Station	Pm10 σ _{ap} (Mm ⁻¹)	Pm10 σ _{sp} (Mm ⁻¹)	Pm10 σ _{extp} (Mm ⁻¹)	ω _p	
Point Barrow	0.39 ± 0.41	9.76 ± 5.20	10.2 ± 5.41	0.965 ± 0.023	
Bondville	4.66 ± 2.27	57.7 ± 17.7	62.4 ± 18.8	0.924 ± 0.028	
Lamont SGP	2.46 ± 1.09	46.9 ± 16.9	49.4 ± 17.4	0.947 ± 0.025	
Sable Island	1.88 ± 0.73	39.9 ± 7.2	41.8 ± 7.56	0.956 ± 0.015	
Hohenpeissenberg	4.82	23.02	28.47	0.765	
Hohenpeissenberg AOD times only	4.91	23.56	28.47	0.800	
Station	Pm1 σ_{ap} (Mm ⁻¹)	Pm1 σ_{sp} (Mm ⁻¹)	Pm1 σ _{extp} (Mm ⁻¹)	ω _p	
Point Barrow	0.36 ± 0.38	6.17 ± 3.61	6.53 ± 3.8	$\textbf{0.954} \pm \textbf{0.023}$	
Bondville 3.94 ± 1.80		48.7 ± 14.7	52.6 ± 15.6	$\textbf{0.924} \pm \textbf{0.028}$	
Lamont SGP	amont SGP 2.08 ± 0.98 37.5 ± 12.7		39.6 ± 13.2	0.944 ± 0.025	
Sable Island	1.51± 0.66	13.6 ± 7.2	15.1 ± 7.53	0.897 ± 0.031	

Monthly average dry optical properties at 4 CMDL sites for the period 1997-2000 (94-2000 Sable Island, 96-2000 Bondville).

Estimated calibration uncertainties for Scattering 7%, Absorption 20%.

Hohenpeissenberg *In-situ* inorg. Chem mass, extinction, SSA and column AOD

Based on data from Kaminski, Fricke & Werhli

Joint Research Centre

EUROPEAN COMMISSION DIRECTORATE-GENERAL

Joint Research Centre

Ispra *In-situ* RH, extinction, SSA and column AOD

Data from Putaud & dos Santos, Zibordi & Suri.

Research Centre

oint

EUROPEAN COMMISSION

directorate-general Joint Research Centre

Ispra *In-situ* RH, extinction, SSA and column AOD

Data from Putaud & dos Santos, Zibordi & Suri.

Ispra *In-situ* RH & extinction, vs column AOD

Aerocom Lille 25//10/2007

US Institute for Environment and Sustainability

Ispra *In-situ* RH & extinction, vs column AOD

Issues for Experiment

- Model inter-comparisons such as AEROCOM have demonstrated the need for 'integrating' i.e. multi-parameter *in-situ* aerosol data sets for closure studies
- Observations of aerosol optical properties in controlled, known humidity conditions give the models a realistic test of their aerosol fields in the absence of model water vapour.
- Such observations are available at c20 (17 NH) sites the majority of which also have AOD & or aerosol composition observations.
- What year(s) 2004-6?
- What time resolution? less than 24 h, AOD mainly morning measurements, however large RH changes from >30%% during morning common.
- Subjectively it appears that changing RH during a day correlates with changes in RH, but over a month no consistent correlation between changing RH and AOD emerges => sunset-sunrise or 06-12h local probably good enough.
- Correlation between RH & extinction coeff. strong in Ispra observations even at low temperatures.

oint Research Centre

TM5 model set-up

- 25 vertical hybrid sigma-p layer, resolution of $6^{\circ}x4$
 - BC treatment:
 - BULK:
 - ≻ mass
 - > considered accum. mode for removal processes (mass mean radius = 0.14 μ m)
 - Cloud-free atmosphere: hydrophobic
 - ➢ in cloud: 30% interstitial, 70% behaves as hygroscopic

- DYNA:

- size resolved BC, mass and number in: insoluble Aitken; soluble Aitken, accumulation and coarse modes
- ➤ aerosol dynamics in the microphysical aerosol model M7 (Vignati et al., 2004): nucleation, coagulation, condensation of H_2SO_4
- ➢in-cloud processing of accumulation and coarse modes

BC GLOBAL EMISSIONS:

- fossil & bio fuel = 4.67 TgC/y (Bond et al., 2004);
- biomass burning = 3.52 TgC/y (van der Werf et al., 2004)

RUN YEAR: 2002 MODEL OUTPUT: monthly mean

BC at marine and remote sites

