## Stronger direct aerosol RF from observational based than models

Several causes for the difference, but do secondary components not included in the AEROCOM models play a role?



IPCC, 2007

## RF estimates for nitrate



The nitrate amount is dependent on other aerosol species and aerosol precursors

 $^{\bullet}NH_{3}$  and  $NO_{x}$ 

Sulphate, since the excess of NH<sub>3</sub> can react to NH<sub>4</sub>NO<sub>3</sub>

Large particles as sea salt and mineral dust



## OC observations from the US IMPROVE network

**Primary OC** 





## **RF OC Fossil fuel**

✓ Secondary organic aerosols (SOA) were simplified treated in Schulz et al. (2006) and only included as a natural component

 $\checkmark$  SOA is also important for the biomass burning aerosols

✓ For Primary organics look at the OM/OC ratio





Fine mode



