AEROCOM-VI: Dust

- Identification of dust sources:
 - anthropogenic/natural
 - Improve characterization
 - Past and future emission
 - Improve existing inventories with new satellite instruments
- Studies realized since AEROCOM-V
 - Tegen et al.: use of SEVERI: diurnal variation
 - Freq of dust events in Sahara/month
 - Source mask over Sahara for 2006-2007
 - Mahowald et al.. : anthropogenic sources due to cultivation
 - In progress: Use of MODIS DB Level 2, 4 years of daily satellite measurement over dust sources

- Constraining emission parameters with groundbased and satellite data by minimization
 - Miller and Cakmur provide to AEROCOM IDL+fortran code
- Comparing dust sources:
 - Many different source inventories but few comparison
 => Proposition to develop for AEROCOM an
 IDL+fortran code to allow simple comparison by
 ingesting 2D sources+emission parameters to calculate
 and plot emission
 - Comparison of satellite data: TOMS, OMI, MISR, SEVERI, MODIS, CALIPSO

November 12, 2005 0-20 °E 0-15°E

Aerosol Optical Depth 550 nm

Angstrom Exponent

Single Scattering Albedo 670nm – 470nm

02 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Frequency AOD > 0.25 2003, 0-20°E 5-20°N

no constraints on a, $\boldsymbol{\omega}$

 α < 0.5, ω increasing with λ

Results in Google Earth

HYDE 3.0 land use > 70

Region North of Lomé, Togo 6.1°N 1.2°E

Model	RMS (No Opt)	RMS (Optimized)
Α	0.63	0.63
в	1.00	0.73
С	0.67	0.67
D	0.94	0.79
E	0.80	0.72

- Optimization increases the agreement of each model with the observations (by reducing the RMS error).
- But the range of emission among the AEROCOM models is not reduced.

Saharan Dust source activation (DSA) based on Meteosat-8/SEVIRI 15-min IR dust index retrievals

Frequency of Emission Events

2006-03-07 06:00 UTC

EUMETSAT distributes BTD based dust index

"red" = BTD(12μm,10.8μm)
"green" = BTD(10.8μm,8.7μm)
"blue" = BT(10.8 μm)

Saharan Dust source activation (DSA) based on Meteosat-8/SEVIRI 15-min IR dust index retrievals

Frequency of Emission Events

Comparison to surface properties

MSG derived <u>major</u> dust emission areas and topographic depressions [Tegen et al., 2002]

Comparison to OMI AAI (July 2006)

Schepanski et al., 2007, GRL

Kerstin Schepanski

Kerstin Schepanski

[Schepanski et al., 2007, GRL