Aerosol optical depth (aot) comparisons to data from ground and space are preferred ways to demonstrate the skill of aerosol modules in

WHY global_ modeling. Comparispns among aeroso_l moduleld‘etail demonstrate strong differences at sub-component_s, which may goes
unnoticed when looking at integrated properties. Specifically we have to wonder: Are ‘good’ aot totals skillful, just luck (off-setting errors)
or a matter of tuning? Investigations of detailed aerosol output of control experiments as proposed in AEROCOM will tell.

g, g Simulated aerosol components
global fields of yearly averages and monthly range

Models Resolution  Simulation  Authors
+ LOLOA 3.75/2.5deg yr 2000 Reddy / Boucher Human activity has increased atmospheric concentrations of greenhouse gases and
+ LSLSCE 3.75/2.5deg yr 2000 Schulz / Balkanski aerosol. Our understanding of assocaited climatic impact is largely based on global
+ UL ULAQ 10/22.5deg yr 2000 Pitari / Montenaro modeling. And uncertainties with respect to aerosol have remained large. For an
¢ SP SPRINTARS ~ 1.3/1.3deg yr 2000  Takemura improved representation new aerosol modules in global modeling now distinguish
¢ CA CANADA 2.8/2.8deg lyravg  Gong between sulfate, organic carbon, black carbon, dust and sea-salt aerosol types. Here
¢ MIMIRAGE 2.5/2.0deg yr2000  Ghan/Easter simulations of 16 models are presented. These are (in terms for forcing: intermediate
¢ NFNCAR-Match ~ 1.9/1.9deg yr2000  Fillmore/ Collins products of) mass and aerosol optical depth and the conversion factor from mass into
¢ NMNCAR-Mozart  2.8/2.8deg lyravg  Tie/Brasseur optical depth; the mass extinction efficiency — for each aerosol type.
+ OT OSLO 2.8/2.8deg yr 1996 Myhre /Isaksen
+ IMIMPACT 2.5/2.0deg 3yravg  Liu/Penner Py X . i )
+ EH ECHAMS 2.8/2.8deg 3yravg  Stier / Feichter = overall agreement for source location, but differences in strength m
+ EL ECHAM4 3.8/3.8deg 3yravg  Lohmann /Feichter n " large differences in simulated transport (and / or removal rates) n
¢ GO GOCART 2.0/2.5deg yr 2000 Chin/Ginoux C - large differences in conversion (of mass into optical depth) due to C
¢+ GR GRANTOUR  5.0/5.0deg lyravg  Herzog / Penner — = size assumptions —
¢+ Gl GISS 4.0/5.0deg 3yravg  Koch/Tegen — * humidification assumptions = extracomparisons needed to —
+ HA HADAM4 2.5/3.8deg Syravg  Roberts/Jones wn = ambient relative humidity used identify/ remove poor assumptions wn
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AEROCOM . - to understand reasons for differences in mass to optical depth conversions among models: identical year, identical water uptake
next : project _ (5 igentify major causes for differences in mass distribution, including transport: identical inventories (sources), identical meteorology
= detailed evaluations _ o ynderstand observed seasonal and regional patterns of aerosol/chemistry: satellite data, field studies, long-term monitoring



