active networks of ground aot data-sets

aot (aerosol optical depth or thickness) workshop at Davos, CH March 8-10, 2004

GAW and Switzerland

Swiss contributions to GAW:

- GAW (strategic plan WMO)
- WCC (EMPA: O3, CO, CH4)
- support of Kenya-station
- DACH (Austria, Germany, Switzerland)
 - Sonnenblick, Jungfraujoch, Hohenpeissenberg, Zugspitze
- WORCC (opt. depth at DAVOS)
 - homogeneity of AOT
 - test/develop new instruments
 - implementations at GAW sites (money for long-term?)

IGACO (- GAW)

- aerosol inhomogeneity
- satellite cannot do everything (aerosol in dark ?)
- IGACO is a consortium of 13 international organizations and late additions from the hydro- and carbon- cycle (AREP/GAW, WWW, WMO satellite office, WCRP)
- Goals
 - to establish a global integrated atmospheric system
 - start with a short-list, measurement requirements, current state of global observations, proposed structure and recommendation for implementation

until 2014 implementation, beyond 2014 operational
 [H2O, CO,CO2, NO2, BrO, CIO, HCI, CFCs, aerosol opt.depth]

connect different data networks from different agencies!

F

GAW aerosol

Gwasis

http://empa.ch/gaw/gawsis/

- 22 global stations, more than 300+ regional stations
 - WDCA (Wilson, JRC) "a 3 button job"
- long-term (climate) aspect / harmonization needed
- primary aerosol parameters
 - multi-wavelength optical depth
 - mass in two size fractions
 - chem. components in two size fractions
 - light absorption and scattering coefficients
 - cloud condensation nuclei

more GAW: http://www.wmo.ch/web/arep/gaw/gaw-home.htm

F

USA - AERONET

- Aeronet (US) / Aerocan (CAN) / Photon (FR)
- 2002: now 100 sites with data at 50% rate
- sun-data: aot, Angstrom-para., precipitable water
- sky-data: ... + size-distribution, refractive indices
- improved web-interface (with stats and choices)
 - http://aeronet.gsfc.nasa.gov
- project ... BAMGOMAS
 - now: AERONET, MODIS, MPLNET, GOCART
 - then: more components to be added

USA - BSRN

surface radiation network (data center at ETH Zuerich)

- to acquire the highest possible quality (for climate)
 - direct/diffuse // downward infrared // upwelling radiance // surface meteorology // upper air meteorolgy // aot // PAR // UV
- applications
 - satellite (statistics good ... but point by point with errors!)
- 8 sites with aot data
 - multi-spectral (412,862,368 [500,778,675,610] nm)
 - automated 1 minute sampling
- recording
 - date, time, pressure, sun zenith angle, clear-sky flag
 - direct and diffuse transmission as function of wavel.

Japan - SKYNET

- many Asian sites + Lille, Belsk, Rome, GSFC
 - standard: sky-radiometer, up-looking radiometer
 - at times extras: pyrano-/phyrheliometer, pyrgeometer, sky-view camera, lidar, microwave radiometer, ...
- differences to AERONET
 - instrument ('PEDE' ['PRF'] not CIMEL)
 - calibration on site (no central calibration)
 - site scan and improved Langley
 - SKYRAD.pack (iterative optimization procedure)
 - less stable ss-albedo data than in AERONET (Dubovik)
- initial data
 - low single scattering albedo (as low as 0.8)

Switzerland - WORCC

Measurements

- optical depth, Angstrom (368, 415, 500, 862 nm)
- 1 min data \rightarrow monthly transfer to ISPRA

Sites of sun-photometers (no sky-scanning mode!)

• Bratts Lake, Ny Alsund, Izana, Mace Head, Davos, Summit, Jungfraujoch, Mauna Loa, Hohenpeissenberg, Ryori, Tamamrassel (Sahara), Cape Point, Bukit Tobang)

Cloud filters

 Harrison/Michalsky, triplet-scheme, opt. depth >3 flagged

Calibration

- high altitude
- compare to co-located instrumentation

France - PHOTONS

25 sites (part of AERONET)

- own calibration for 35 CIMEL (many with polarization)
 - outside: MIDI PYRENEE (2900m altitude)
 - inside: Lille (lab)

web-site http://www-loa.univ-lille.fr/photons

daily aerosol data available

applications

- polarization allows non-spherical analysis
- with lidar example at Belsk (separate levels)

next

new African sites for West-African Monsoon experiment

Australian network

- data: 412,330,610,778,862nm; minute data
- instruments
 - SPOA1: Cape Grim (85-) Alice Springs (96-) Melbourne
 - SPOA2: Darwin Alice, Springs
 - added radiation instrumentation at many sites
- calibration
 - in-situ (Langley, period statistics, ASR(spectrometer))
 - off site (instrument rotation)

Canada - AEROCAN

- 10 sites (part of AERONET), 6>50°N
 - future calibration site: Bratts Lake
 - interesting new site: Resolute (Northern Canada)
 - 15 year of data: Sherbrooke
- fine / coarse mode information
 - from 1st and 2nd derivative of Angstrom parameter
- a note on water vapor retrievals
 - spectral shift of sensor can have a big impact
- next
 - star-retrievals (diff. intensity: self calibration)

F

USA - SURFRAD

- sites: mainly US, 21 around DOE Cart Sites
 - MFRSR: 415, 500, 615, 673, 870, 940nm
 - 15sec measurement, averaged over 2 minutes
 - web-sites: http://srrb.noaa.gov, http://doe.arm.gov
- interesting results
 - in recent years... Angstrom parameter has decreased
- USDA is not Surffrad
 - interested in UV … by they have the MFRSR as well
- co-location
 - Bondville (CIMEL)

Russia - SIBRAD

- 5 CIMEL sites (part of AERONET)
- 3 SP6 sites
 - SP6 UV sensors: 308,322,340,370,410 nm
 - SP6 VIS sensors: 440,500,670,870,940,1050nm
 - SP6 n-IR sensors: 1.26,1.55,2.06,... um
- calibration
 - Langley and comparisons with CIMEL instruments

DWD - Germany

- 5 sites
 - Zingst (Baltic Sea), Lindenberg(86-), Posdam(84-03), Hohenpeissenberg, Zugspitze
 - same 'German' instruments to WMO specs at all sites
- results
 - highest cloud-cover in Europe at highest aot (mid 80s)
 - comparison to MODIS, depend on site reg. represent.
- ... and interestingly (again!)
 - Angstrom parameter has decreased in recent years

Japan - JMA

- 3 (sunphotometer) sites (at Ryori since 1988)
 EKO-MS-100: 368,550,675,778,862nm
- 1 lidar (at Ryori since 2002)
 - scattering, depolarization-ratio, extinction: 532nm
- 14 pyrheliometer sites

Brazil – LBA

- many CIMELs ...since 1994! (part of AERONET)
- biomass burning season in South America
 - high AOT, even mass accumulation mode dominates
 - ss-albedo largest at the beginning of the burn season
 - aerosol leads to suppression of clouds ("warming")
 - radiative forcing
 - -10W/m2 (ToA) // 28W/m2 (atm) // -38 W/m2 (surface)
 - effect impact on far away cities (e.g. Sao Paulo)

China – 'Aeronet'-clone

- ca. 20 sites (standard CIMEL with polarization)
 - for sand and dust forcasting
 - for future climate effect studies
 - own processing not part of AERONET !
- additional measurements
 - soil moisture, visibility

Netherlands - KNMI

- 2 sites (Cabauw, Surinam)
 - Cabauw
 - SPUV 368,501,675,871,940nm
 - 1 min (aot, Angstrom) Michalsky cloud screen
 - Surinam
 - 366,494,670,815,1033nm
 - 1 min (aot, Angstrom) Michalsky cloud screen

2 Aeronet (CIMEL) sites

- Cabauw
- Den Haag
 - also to study land-sea differences

F

Italy – polar aots

high latitudes

- sensitive to aerosol, sign of climate impact uncertain
- many different instruments difficult intercalibration
- harsh environment
- 412nm/675nm Angstrom / aot type-classification

new

- spectral solid state photometers
 - 234-702nm
 - 665-1103nm

Interesting result

– at Ny Alsund: largest aots have increased since 99 !

Russia – polar aots

- ca. 15 stations
 - increase in springtime aot 50s to 90s
- no new data since the 1990

Spain – dust aots

- Izana (part of GAW)
 - sea-level
 - high altitude (>2000m)
- additional sites on the mainland

USA - CMDL

- aot measurements ... historically by radiation
- 7 sites
 - sunphotometer PMOD1 (until 2001) PFR (since 2001)
- items to remember
 - direct bean methods has merit over hemispheric data
 - be cautious with automated cloud-screen algorithms
 - In situ calibrations better than instruments rotations
 - commercial instruments should agree within 0.01 aot
 - handheld instruments are not suitable for networks

interesting

- Mauna Loa background T has decreased .937 to .934
 - signs of increased (uplifted) Asian pollution

Europe – lidar activities (Earlinet)

boundary layer height statistics

- winter: 1000m, summer: 1500m (with large scatter) ...
 ... at Hamburg, Germany
- altitude information
 - need complementary info from back-trajectories
- extinction profiles
 - NO: backscatter
 - YES: Raman, HSRL (difficult), angle-scan (if homog.)
- data
 - many... but inhomogeneous in time and space

USA – lidar activities

MPL-Net

- 2 US operational sites, many temp.sites, plan for more
- eyesafe lidar data + AERONET lidar ratio \$\virthin\$ extinction
- REALMs
 - 7 operating sites mapping Eastern US, plan for 4 more
 - common processing envisoned (like Earlinet)
- GLAS (web-site: glo.gsfc.nasa.gov)
 - limited laser life, ice sheet height, aerosol secondary
 - small ice-crystal are problem in aerosol retrievals
- CALISPO
 - part of the A-train: 3ch. lidar, IR radiometer, camera
 - aerosol layer top/base, aot>0.1, cirrus, ice-water phase

Japan - lidar

- JMA
 - Ryori (Japan)
- Skynet
 - 5 sites

in-situ

Iongterm (light aircraft – over instrumented site)

- surface data relevant to properties aloft?
 - ss-albedo often higher at higher altitudes
 - general agreement between in-situ and CIMEL (MFRSR+bias)
- case studies (heavy well instrumented aircraft)
 - aerosol altitude (in cloudy scene) matters! (off Namibia)
 - reasonal comparisons to AERONET size-distributions
 - based on PCASP long flight leg data
 - non-spherical size and ss-albedo issues
 - new: FAMM aircraft (BEA 146 ... but less duration than C-130)