Acronym soup MPL-NET, REALM, GLAS, CALIPSO

R. M. Hoff University of Maryland, Baltimore County

The Micro-pulse Lidar Network (MPLNET)

PI: Judd Welton NASA Goddard Space Flight Center Greenbelt, MD 20771 USA

Co-I's: James Spinhirne, Si-Chee Tsay, Brent Holben

Staff: James Campbell, Timothy Berkoff

MPLNET website: http://mplnet.gsfc.nasa.gov

The Micro-pulse Lidar Network : (MPLNET)

Mission: Long-term, world-wide observations of aerosol and cloud vertical structure using common instrument/data processing Funding: NASA Earth Observing System & Radiation Sciences Program

Activities:

- co-locate sites with AERONET sunphotometers, and if possible BSRN radiometers
- partner with other independent research groups interested in MPL measurements (federated network)
- participate in field experiments and research cruises
- work with aerosol modelers to study aerosol transport processes

Satellite Lidar Calibration/Validation: GLAS - ICESat (2003), CALIPSO (2005)

MPLNET website: http://mplnet.gsfc.nasa.gov

Extinction 523nm (km)-1

0.00

2.25

The Regional East Atmospheric Lidar Mesonet: REALM

http://alg.umbc.edu/REALM

TABLE 1 REALM LIDAR SYSTEMS

Location	PI	Type(s)		
Egbert, ON	K.I. Strawbridge	Scanning elastic		
Durham, NH	I. Dors	Winds		
Halifax, NS	T. Duck	Elastic, Raman		
New York, NY	S. Ahmed	Elastic, DIAL		
State College,	C.R. Philbrick	Raman, DIAL		
PA				
Baltimore, MD	R.M. Hoff	Elastic, Raman		
Greenbelt, MD	D.N. Whiteman	Raman		
Greenbelt, MD	D. Venables	Raman		
Hampton, VA	M.P. McCormick	Elastic		
Huntsville, AL	M. Newchurch	DIAL		
Atlanta, GA	G. Gimmestad	DIAL		

Monitoring the Megacity

Optical Depth from MODIS/AERONET

15:30 UT June 2

@ 500 nm

Colorco trajectories, GSFC.

Initial time: May 19, 2003 1800 UTC Forward trajectories +/- 2° of GSFC Site between June 1 - 3, 2003 between 700 - 400 hPa

Initial time: May 19, 2003 1800 UTC

Judd Welton NASA Goddard Space Flight Center Laboratory for Atmospheres

GLAS Atmospheric Science Team:

James D. Spinhirne, Stephen P. Palm, Dennis Hlavka, William Hart, Matthew McGill

Latitude

Results at 532 nm

E.J. Welton, NASA Goddard Space Flight Center, Judd.Welton@nasa.gov, 11/18/03

Example of Initial GLAS Data (1064 nm March 3, 2003 Dust from West Africa GLAS signals from ICESat: 04:40 UTC MODIS images from Terra and Aqua: 12:40 and 14:00 UTC (MODIS rapid response website rapidfire.sci.gsfc.nasa.gov)

NASA MODIS Images

Preliminary outcome from initial dataset:

GLAS 1064 nm channel is detecting water & ice clouds, and moderate to high concentration aerosol plumesGLAS was not within MODIS swath during Feb/Mar 03, but despite time difference of several hours, comparisons with dust plume images are not bad

Longitude

Geoscience Laser Altimeter System

Global Lidar Measurements of Clouds and Aerosol in the Atmosphere

J. Spinhirne /GSFC January 2004

GLOBAL ORBITAL LIDAR OBSERVATIONS OF CLOUD AND AEROSOL VERTICAL DISTRIBUTION

Geoscience Laser Altimeter System

J. Spinhirne /GSFC January 2004

06-Oct-2003 18:00:00 - 23:59:59 GMT

SPACE LIDAR OBSERVATION OF THE DISTRIBUTION OF AEROSOL New Input for Models

GLAS View of Saharan Dust Layer

Data Access

E.J. Welton, NASA Goddard Space Flight Center, Judd.Welton@nasa.gov, 11/18/03

GLAS Atmospheric Science Team Website: glo.gsfc.nasa.gov

* Realtime images available within ~8 hours of observation

As of 11/01, PICASSO-CENA, ESSP3, ESSP3-CENA, P-C, ... is:

The **CALIPSO** Mission

(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)

D. M. Winker, LaRC/NASA, PI

And,

the CALIPSO lidar now has a name:

CALIOP

(Cloud-Aerosol LIdar with Orthogonal Polarization)

(rhymes with "I - O - P")

CALIPSO Sci Team Mtg Hampton, VA 22-24/05/02

Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations

Mission Concept

Implementation

- One spacecraft with 3 science instruments:
 - 3 channel lidar
 - IR imager
 - wide-field camera
- Launch in March 29, 2005
- 3-year mission
- Fly in formation with EOS-PM in polar orbit

	Measurement Capabilities	Representative Spatial Resolution	
Data Product		Night	Day
	and Uncertainties	Horizontal x Vertical	Horizontal x Vertical
Aerosol layer top and base height	β _{min} = 2.5 x 10 ⁻⁴ km ⁻¹ sr ⁻¹		
	(τ = 0.005 for a 500 m thick layer)	20 km x 120 m	50 km x 120 m
Thin cloud top and base	β _{min} = 1 x 10⁻³ km⁻¹ sr⁻¹		
height	(τ = 0.005 for a 250 m thick layer)	1 km x 60 m	4 km x 60 m
Thick cloud base height	Layer $\tau < 5$	4 km x 60 m	50 km x 60 m
PBL cloud structure	β _{min} = 1.6 x 10 ⁻² km ⁻¹ sr ⁻¹	333 m x 30 m	333 m x 30 m
Aerosol τ (Resolutions for case of $\tau = 0.1$)	$rac{\partial au}{ au} \leq 40\%$ (total error) (includes 30% error in S)	8 km horizontal	20 km horizontal
Aerosol σ(z)	$\frac{\partial \sigma}{\sigma} \leq 30\%$ (random error only)	3.5 km x 120 m	6 km x 120 m
Cirrus	Within a factor of 2 for	15 km horizontal	NA
τ, σ (Ζ)	τ < 5		
Ice/water phase	Layer by layer	16 km x 60 m	16 km x 60 m
		or 4 km x 240 m	or 4 km x 240 m

Backups

MPLNET: Instruments

- Micro-pulse Lidar Systems (MPL)
 - compact & semi-autonomous
 - 523 nm wavelength
 - PRF 2500 Hz
 - eye-safe, output energy in μJ
 - small FOV, no multiple scattering

- <u>Sunphotometer</u>
 - Sites & Experiments: NASA Aerosol Robotic Network (AERONET) sunphotometers by Cimel
 - Handheld Microtops sunphotometer used on ocean cruises

• Original MPL Design (Type 1-3)

Transceiver:

20cm Cassegrain Telescope on top – Laser Head, Detector, Optics below

<u>Scalar Unit:</u> Data at 30, 75, 150, 300 m vert. res.

Laser Power Supply: 1 W Nd:YLF Laser Diode (Doubled to 523nm on Head)

Laptop Computer: Data Acquisition, Storage (1 min res)

• New MPL Design (Type4)

Basic System Specifications: Same optical design, and wavelength with similar output energy. Temporal/Spatial resolutions the same. Still eyesafe & autonomous

Improvements:

- More rugged design
- Improved laser supply creates longer lifetime and control of laser via computer
- Multi-channel data system
- Fiber coupled detectors

Aerosol Properties from TOMS observations

TOMS – Aeronet comparison during SAFARI2000

82% of points are within expected accuracy limits (0.1 or 30%)

87% within +/- 0.05

October 31, 2003 Bay of Fundy region TERRA MODIS RGB

TERRA MODIS Optical Depth

MODIS Aerosol Optical Depth 2003 10 31 EPA Region 1-3

Aerosol over clouds OD 0.6-0.8

Correlations between AOD and PM2.5(hourly)

BIRMINGHAM Site 010732003

*Correlation estimates based on data for this site only.