GLOBAL AEROSOL MODELLING AND OBSERVATIONS: TOWARDS IPCC FAR

Olivier Boucher, Shekar Reddy, & Nicolas Bellouin Laboratoire d'Optique Atmosphérique, CNRS / USTL, France

Aerocom Second Meeting

10-12 March 2004

Acknowledgements to Y. Balkanski, M. Schultz, C. Textor

0/ Background information on IPCC

1/ Estimation of the direct aerosol radiative perturbation from POLDER-1 / MODIS and AERONET

Bellouin et al., GRL, 2003 Bellouin, PhD, 2003 Bellouin et al., in preparation, 2004

2/ Estimation of the direct aerosol radiative forcing and perturbation from the LDMZT-aerosol model

Reddy et al., JGR, for submission, 2004 Reddy et al., GRL, for submission, 2004

3/ Discussion

Presentation of IPCC 4th assessment report Outline

Chapter	Title	Pages
	Summary for Policymakers	15
	Technical Summary	60
1	Historical Overview of Climate Change Science	15
2	Changes in Atmospheric Constituents and in Radiative Forcing	60
3	Observations: Atmospheric and Surface Climate Change	60
4	Observations: Changes in Snow, Ice and Frozen Ground	25
5	Observations: Oceanic Climate Change and Sea Level	35
6	Paleoclimate	30
7 🎗	Couplings Between Changes in the Climate System and Biogeochemistry	50
8	Climate Models and their Evaluation	50
9	Understanding and Attributing Climate Change	50
10 🌾	Global Climate Projections	50
11	Regional Climate Projections	60
	(total)	560
	Sulfate fields for 6 SRES scenar	ios
	(A1B, A1, A2, A1FI, B1, B2) ava	lilable
	every 10 years from	

www-loa.univ-lille1.fr/~boucher/sres

2. Changes in Atmospheric Constituents and in Radiative Forcing

Executive Summary

Introduction

Definition and Utility of Radiative Forcing Recent Changes in Greenhouse Gases Aerosols – Direct and Indirect Radiative Forcing Radiative Forcing due to Land Use Changes Contrails and Aircraft-Induced Cirrus Variability in Solar and Volcanic Radiative Forcing Synthesis of Radiative Forcing Factors GWPs and Other Metrics for Comparing Different Emissions Appendix: Techniques, Error Estimation, and Measurement Systems

7. Couplings Between Changes in the Climate System and Biogeochemistry

Executive Summary

Introduction to Biogeochemical Cycles

The Carbon Cycle and the Climate System

Global Atmospheric Chemistry and Climate Change

Air Quality and Climate Change

Aerosols and Climate Change

The Changing Land Surface and Climate

Synthesis: Interactions Among Cycles and Processes

Presentation of IPCC 4th assessment report Outline

2	0	0	3	
-	v	v	•	

Apr	1st Scoping Meeting
Sep	2nd Scoping Meeting
Nov	WG1 AR4 Outline approved

Nov Call for LA Nominations

2004

Feb - Apr Selection of LAs Sep 1st LA Meeting (Italy)

2005

Feb–Apr	Informal Review of Zero-Order Draft
May	2nd LA Meeting (China)
	Note that literature to be cited will need to be published or available in draft form by this time
Sep-Nov	Expert Review of First-Order Draft
Nov	3rd LA Meeting (New Zealand)
	Note that literature to be cited will need to be published or in press by this time

2006

Apr–May	Government/Expert Review of Second-Order Draft
June	4th LA Meeting
Oct–Nov	Government Review of Summary for Policy Makers

2007

Jan IPCC Approval of WG1 AR4

Presentation of IPCC 4th assessment report Timeline

yes Sea salt Boucher and Tanré, GRL, 2000 Bellouin *et al.*, GRL, 2003 Bellouin, PhD, 2003.

> Estimation of TOA, BOA, and atmospheric DARP from synergenetic use of POLDER-1 and AERONET

Atmospheric DARP=absorption

Average: 2.5 Wm⁻²

TOA, BOA, and atmospheric DARP over the clear-sky ocean by aerosol type

Bellouin *et al.*, GRL, 2003 Bellouin, PhD, 2003

TOA, BOA, and atmospheric DARP over the clear-sky ocean by aerosol type and weighted by plume extent

POLDER-1 AEROSOL RADIATIVE FORCING RESULTS

Boucher et Tanre (2000)

Non-absorbing aerosols - aerosol optical thickness (AOT) for scattering only.

Date	AOT @ 550 nm	TOA forcing	Surface forcing	RFE
Nov. 1996	0,122	-5,49	-5,69	-45
Dec. 1996	0,119	-5,47	-5,67	-46
Jan.1997	0,116	-5,33	-5,53	-46
Feb. 1997	0,142	-6,01	-6,23	-42
Mar. 1997	0,139	-5,69	-5,9	-41
Apr. 1997	0,124	-5,45	-5,65	-44
May. 1997	0,136	-5,93	-6,15	-44
Jun. 1997	0,139	-6,09	-6,31	-44
8-month average	0,123	-5,58	-5,78	-45

Bellouin et al. (2003)

Absorbing aerosols - AOT for extinction.

Date	AOT @ 550 nm	TOA forcing	Surface forcing	RFE
Nov. 1996	0,124	-5,06	-7,15	-41
Dec. 1996	0,121	-5,02	-7,23	-41
Jan.1997	0,118	-4,96	-6,84	-42
Feb. 1997	0,145	-5,59	-7,68	-39
Mar. 1997	0,141	-5,21	-7,53	-37
Apr. 1997	0,126	-4,99	-7,2	-40
May. 1997	0,138	-5,42	-7,88	-39
Jun. 1997	0,141	-5,63	-7,86	-40
8-month average	0,125	-5,14	-7,26	-41

Bellouin et al., 2004

MODIS AOD=0.19

July 2000-August 2001

TOA DARP= -4.9 Wm^{-2}

Clear-sky

BOA DARP= -10.3 Wm⁻²

LMDZT-aerosol model (LOA version)

- Sulfate, BC, POM, dust, sea-salt
- same as in AEROCOM A runs (sulfate overestimated, BC/POM underestimated)
- External mixture
- Evaluation done with EMEP, IMPROVE, and other surface mass concentrations, and AERONET extinction and absorption AOD ==> small underestimation of extinction and absorption AOD

AOD by source type

ÐÖE

705

1208

BÓV

Ó

all dust and sea-salt

Table 1: AOD $\times 100$	(at 550 nm) by	Different Aerosol	and Source	Types for	Year 2001
---------------------------	----------------	-------------------	------------	-----------	-----------

Source \rightarrow	Fossil Fuels			Biomass			Natural			All sources		
Aerosols ↓	NH	$_{\rm SH}$	Global	NH	$_{\rm SH}$	Global	NH	$_{\rm SH}$	Global	NH	$_{\rm SH}$	Global
Sulfate	4.99	0.61	2.80	0.13	0.10	0.11	1.15	1.27	1.21	6.27	1.98	4.13
BC	0.20	0.02	0.11	0.18	0.18	0.18	_	_		0.38	0.20	0.29
OM	0.33	0.02	0.17	1.25	1.33	1.29	0.39	0.33	0.36	1.97	1.68	1.82
Dust	_	_	_	_	_	_	5.67	0.23	2.95	5.67	0.23	2.95
Sea Salt	_	_	_	_	_	_	1.85	3.58	2.71	1.85	3.58	2.71
(acc. mode)							0.89	1.57	1.23	0.89	1.57	1.23
(coarse mode)	_	_	_	_	_	_	0.96	2.01	1.48	0.96	2.01	1.48
All	5.52	0.65	3.08	1.56	1.61	1.58	9.06	5.41	7.23	16.14	7.67	11.90

Fossil fuel

Biomass

"Natural"

TOA DARP by source type clear-sky (top) - all-sky (bottom)

Sources \rightarrow	Fossil Fuels				Biomass			Natural			All sources	
Aerosols ↓	NH	$_{\rm SH}$	Global	NH	SH	Global	NH	$_{\rm SH}$	Global	NH	$_{\rm SH}$	Global
Clear sky:												
Sulfate	-1.23	-0.12	-0.67	-0.02	-0.02	-0.02	-0.23	-0.25	-0.24	-1.48	-0.39	-0.93
BC	+0.25	+0.03	+0.14	+0.23	+0.21	+0.22	_	_	_	+0.48	+0.24	+0.36
OM	-0.13	-0.01	-0.07	-0.49	-0.54	-0.52	-0.07	-0.06	-0.07	-0.69	-0.61	-0.66
Dust	_	_	_	_	_	_	-1.23	-0.04	-0.63	-1.23	-0.04	-0.63
Sea salt (acc. mode)	_	_	_	_	_	_	-0.22	-0.44	-0.33	-0.22	-0.44	-0.33
Sea salt (coarse mode)	_	_	_	_	_	_	-0.16	-0.42	-0.29	-0.16	-0.42	-0.20
All	-1.11	-0.10	-0.60	-0.28	-0.35	-0.32	-1.91	-1.21	-1.56	-3.30	-1.66	-2.48
All sky:												
Sulfate	-0.76	-0.07	-0.42	-0.01	-0.01	-0.01	-0.14	-0.14	-0.14	-0.91	-0.22	-0.57
BC	+0.26	+0.03	+0.15	+0.26	+0.28	+0.27	_	_	_	+0.52	+0.31	+0.42
OM	-0.08	0.00	-0.04	-0.39	-0.38	-0.38	-0.04	-0.03	-0.04	-0.51	-0.41	-0.46
Dust	_	_	_	_	_	_	-0.90	-0.02	-0.46	-0.90	-0.02	-0.46
Sea salt (acc. mode)	_	_	_	_	_	_	-0.13	-0.22	-0.15	-0.13	-0.22	-0.18
Sea salt (coarse mode)	-	_	_	_	_	_	-0.08	-0.17	-0.12	-0.08	-0.17	-0.12
All	-0.58	-0.04	-0.31	-0.14	-0.11	-0.12	-1.29	-5.58	-0.94	-2.01	-0.73	-1.37

Table 2: Summary of Globally- and Annually- Averaged Aerosol Shortwave DRF (Wm⁻²) by Different Aerosol and Source Types for Clear and All Sky Conditions for Year 2001

DARP=-2.5 Wm⁻²; AOD=0.119; RFE=-21 Wm⁻²

MODIS TOA DARP

RT, SSA, AOD, sampling?

DARP=-4.9 Wm⁻²; AOD=0.19; RFE=-26 Wm⁻²

Reddy et al., JGR, for submission, 2004 Reddy et al., GRL, for submission, 2004

Compare various estimates of AOD, DARF, and Forcing Efficiency (TOA) over the ocean

				local/instar	ntaneous	dear	-sky
Study	notes	Region	AOD	DARF	RFE	DARF	RFE
				W/m2	W/m2/AOD	W/m2	W/m2/AOD
i. Observational and model	ling stud	dies of aerosol over the global o	ceans				
Haywood_99	1	global oceans	n/a			-6.7	n/a
Boucher_00	2	global oceans	n/a			-5.5	n/a
Takemura_02	3	global oceans	0.089			-1.9	-22
Chou_02	4	global oceans	0.104			-5.4	-52
Yu_04_GOCART	5	global oceans	0.106			-2.9	-27
Yu_04_GOCART+MODIS	5	global oceans	0.128			-4.6	-36
Christopher/Zhang_02	6	global oceans	0.15	-10.5	-70	-3.5	-23
ii. Observational and mode	ling stu	dies of regional aerosols over th	ne ocean				
				local/instar	ntaneous	clear	-sky
Study	notes	Region	AOD	DARF	RFE	DARF	RFE
				W/m2	W/m2/AOD	W/m2	W/m2/AOD
Christopher/Zhang_02	6	Australia	0.172	-13.37	-78	-4.46	-26
		East Asia	0.143	-12.43	-87	-4.14	-29
		North Africa	0.114	-12.56	-110	-4.19	-37
		North America	0.067	-8.02	-120	-2.67	-40
		South Africa	0.139	-12.66	-91	-4.22	-30
		Remote Ocean	0.039	-1.73	-44	-0.58	-15
iii. Studies of forcing efficie	ncy usi	ng ground-based, in-situ measu	rements of aeros	sol optical propertie	s and a simple for	mula	
			Scat_550	b	β	eo	RFE
			Mm-1				W/m2/AOD
Anderson_99	7,8	CPO: Marine	11.91	0.102	0.239	0.986	-70
		CPO: NA-modifed marine	13.57	0.116	0.256	0.941	-70
		CPO: Continental	13.8	0.127	0.269	0.904	-69
		CPO: Asian-modified marine	43.75	0.104	0.242	0.955	-67
Delene/Ogren_02	7,9	BND	57.0	0.130	0.272	0.906	-70
		SGP	46.7	0.128	0.270	0.932	-72
		WSA	40.7	0.118	0.259	0.953	-72
		BRW	10.4	0.109	0.248	0.959	-70
iv. Studies of forcing efficie	ncy usi	ing airborne in-situ measuremen	ts and full-blown	radiative transfer i	nodeling		
Conant_03	10	Asian_dust					-37
		Asian_pollution					-34

Tad Anderson, Univ. Washington, 2004

DEFINITIONS:

AOD: Aerosol optical depth at 550 nm averaged over the global oceans (or clear-sky portions thereof)

DARF: top-of-atmosphere, direct aerosol radiative forcing (shortwave energy perturbation by the total aerosol: natural plus anthropogenic)

local/instantaneous: forcing averaged over all times and locations where it was measured

clear-sky = average over all times (24-hour) but only over cloud-free regions of the ocean

all-sky = includes direct effect in cloudy regions; averaged over all times and places (clear and cloudy)

RFE: top-of-atmosphere radiative forcing efficiency or DARF divided by AOD.

Scat_550: Mean value of low-RH scattering at 550nm as measured by nephelometry.

b: ratio of hemispheric backscatter to total scatter at low-RH as measured by nephelometry.

β: ratio of upscatter to total scatter as calculated from b with polynomial fit based on the Henyey-Greenstein phase function

o: single scattering albedo at low RH as measured by nephelometer and absorption photometer

Ground-based stations: CPO (Cheeka Peak, Washington coast), BND (Bondville, rural Illinois), SGP (Southern Great Plains, rural Oklahoma),

WSA (Sable Island, Nova Scotia), BRW (Barrow, northern coast of Alaska)

NOTES:

- Haywood et al. (1999) Science, 283, 1299-1303. ERBE measurement minus GCM calculation of reflected sunlight at TOA where GCM has zero aerosol. The difference is therefore the aerosol effect (but maybe some whitecap effect as well, as the paper admits).
- 2. Boucher and Tanre (2000) GRL, 27, 1103. Uses 8-months of data from POLDER-I. Assumptions carefully described; various sensitivity tests performed.
- Takemura, Nakajima, Dubovik, Holben, Kinne (2002), J Clim. 15(4), 333-352. Global, 3-D model tied to various measurements. Paper reports forcing for shortwave plus longwave. Results here were obtained from the author (personal communication) and apply to shortwave only.
- 4. Chou et al. (2002), J. Atmos. Sci, 59, 748. Uses SeaWIFS satellite and radiative transfer modeling.
- Yu et al. (2004), JGR, in press and also Yu et al. (2003), JGR, 108(D3), 4128, doi:10.1029/JD002717. Uses MODIS and GOCART model. Table 3 shows results for GOCART model only and for GOCART model after assimilation of MODIS data.
- 6. Christopher and Zhang (2002), Geophys. Res. Lett., 29 (18), 1859, doi:10.1029/2002GL014803. Solar flux from CERES divided by AOD from MODIS. Additional information from Christopher et al. (2004), draft manuscript on radiative forcing, available from author (sundar@nsstc.uah.edu) Cloud-cleared CERES pixels had mean AOD of 0.09, but this was only 5% of all CERES pixels; for all MODIS clear-sky ocean data mean AOD was 0.15. Paper reports 70 W/m2 per unit AOD as mean, instantaneous forcing efficiency; so here I just apply that number to the mean AOD of 0.15. For diurnal averaging - i.e. clear-sky DARF as opposed to instantaneous DARF - the paper says divide by 3.
- Simple formula for RFE has been applied to aerosol optical properties measured at low RH. Forcing efficiency at ambient RH is somewhat lower due to aerosol hydration. To approximately correct for this effect, values reported here have been multiplied by a factor of 0.88, which is consistent with the hydration calculations of Anderson et al. (1999).
- Anderson et al. (1999) J. Geophys. Res., 104, 26793. RFE recalculated here with assumed cloud-cover of zero to be consistent with the clear-sky definition of RFE.

 Delene and Ogren (2002), J. Atmos. Sci, 59, 1135-1150. RFE recalculated from aerosol optical properties given in Table 3 and with assumed cloud-cover of zero (to be consistent with clear-sky definition of RFE) and assumed surface reflectivity appropriate to the ocean (0.07).

10. Conant et al. (2003), J. Geophys. Res., 108 (D23), 8661, doi:10.1029/2002JD003260.

Tad Anderson, Univ. Washington, 2004

- * Should we add RF to the list of AEROCOM parameters?
- * Can we produce our best estimate of aerosol RF?
- * What about J. Hansen's paper on BC absorption?
- * Can we give recommendations on how to group aerosol effects for the RF bar chart? i.e. FF, open BB, biofuels, dust?
- * Estimation of uncertainties combing models and observations? - test Yoram's hypothesis of accumulation-mode being mostly anthropogenic
 - consider the fact that the constraints from satellite and ground-based observations decreases the uncertainty

We can propagate uncertainties But some observational constraints:

