

2nd AEROCOM Workshop, Ispra, Italy March 10 – March 12, 2004

Sea-salt Production and its Global Budget

Sunling Gong

Meteorological Service of Canada

Source Functions (1)

[Monahan *et al.* 1986]

wind > 10 m s⁻¹

By two mechanisms:

$$\frac{dF_{SS}(r)}{dr} = \frac{dF_0(r)}{dr} + \frac{dF_1(r)}{dr}$$

(a) for indirect mechanism (through bubbles): $\frac{dF_0}{dr} = 1.373U_{10}^{3.41}r^{-3}(1+0.057r^{1.05}) \times 10^{1.19e^{-B^2}}$

where $B = (0.380 - \log r) / 0.650$

(b) for direct mechanism (through spume):

$$\frac{dF_1}{dr} = \begin{cases} 0 & r < 10 \ \mu m \\ 8.60 \times 10^{-6} e^{2.08U_{10}} r^{-2} & 10 \ \mu m \le r \le 75 \ \mu m \\ 4.83 \times 10^{-2} e^{2.08U_{10}} r^{-4} & 75 \ \mu m \le r \le 100 \ \mu m \\ 8.60 \times 10^6 e^{2.08U_{10}} r^{-8} & r \ge 100 \ \mu m \end{cases}$$

Source Functions (2)

Smith *et al.* [1993]

$$\frac{dF}{dr} = \sum_{i=1,2} A_i \exp\left[-f_i \left(\ln\left(\frac{r}{r_{0i}}\right)\right)^2\right]$$

where *A* is strongly dependent on wind speed. For the jet mode, $Log(A) = 0.0676 u_{10} + 2.34$, and for the spume mode $Log(A) = 0.959 u_{10}^{0.5} - 1.476$. f_i is the mode width (3.1 and 3.3) and r_{0i} mode radius (2.1 and 9.2 µm).

Source Functions (3)

Vignati et al 2001

Table 1. Effective Source Function Used in CAT, OD97, Is Formulated as the Sum of Three Lognormal Distributions^a

Number N , cm ⁻³	Radius R , μ m	Standard Deviation σ
$10^{(0.095U+0.283)}$	0.2	1.9
$10^{(0.0422U+0.288)}$	2	2
$10^{(0.069U-3.5)}$	12	3

 ${}^{\circ}F(\log r) = N/\sqrt{2\pi} \log \sigma \exp(-(\log r - \log R)^2/2 \log^2 \sigma)$, where r is the particle radius. The geometric mean radius R applies for RH equal to 80%; U is the wind speed in m s⁻¹.

Comparison of Source Functions

Source Functions (4)

Gong 2003

$$\frac{dF}{dr} = 1.373u_{10}^{3.41}r^{-A} \left(1 + 0.057r^{3.45}\right) \times 10^{1.607e^{-B^2}}$$

where $A = 4.7(1 + \Theta r)^{-0.017r^{-1.44}}$

B=(0.433-log r)/0.433 and Θ in A is an adjustable parameter

Comparison of Source Functions

Comparison with Observations

Meteorological Service of Canada Environment Canada

Model	Configurations – CAM/GCM			
Aerosols	12 bin sectional model: <i>r</i> =0.005 – 20.48 μm [dry]			
Sources	 Sulphate: anthropogenic SO₂ and SO₄ (GEIA 1B: 2-level) oceanic DMS concentration (Kettle <i>et al.</i> 1999) land H₂S (Benkovitz <i>et al.</i> 1994) Sea-salt: Monahan 1986, Vignati 2001, Gong 2003 BC/OC: fossil fuel (Cook <i>et al.</i>) bio-mass (Liousse and Penner <i>et al</i>) boreal (Lavoue <i>et al</i>) Soil Dust: size-segregated (Marticorena and Bergametti 1995) 			
Prognostic Variables	Aerosol mass mixing ratio in each size bin, cloud water and ice, DMS, SO ₂ , H ₂ S and H ₂ SO ₄ [g]			
Clear-sky processes	Nucleation, condensation, coagulation, on-line S chemistry with MOZART's OH and NO_3			
Wet Processes	Below- and In-cloud scavenging (Gong <i>et al</i> 2003) Explicit cloud scheme (Lohmann and Roeckner 1996) Cloud activation and cloud S chemistry with MOZART's O_3 , H_2O_2 and HNO_3 , and NH_3 Brasseur et al. 1998) in stratoform and convective clouds (von Salzen et al. 2000)			
Dry Deposition	Size-dependent particle and SO ₂ (Zhang <i>et al</i> 2001)			
Resolution	128×64×32, 15 min			

Global 3-D Simulations (1)

Wind Speed (m s⁻¹)

Obs.

 $\ln(\chi_{10}) = \ln(b) + A \, u_{10}$ A=0.12 - 0.27 (Gong et al 1997) Model - Vignati

0.00 - 0.03

Global 3-D Simulations (2)

(b) Roaring 40s South

a=1.68

r²=0.71

Column Loading

Surface Loading

Surface Flux

a=3.41

r²=1.0

10

a=2.06

r²=0.72

Wind Speed (m s⁻¹)

10-5

10-6

10-7

10-8

10⁻⁹

10-10

Sea-salt Mass Mixing Ratio (kg kg⁻¹)

Wind Speed (m s⁻¹)

Obs.

 $ln(\chi_{10}) = ln(b) + A u_{10}$ A=0.12 - 0.27 (Gong et al 1997) Model - Gong <u>A=0.14 - 0.17</u>

Impact of \Theta on Sea-salt Flux

Global Sea-salt Budgets

Meteorological Service of Canada Environment Canada

Gong et al 2003

Global Annual Sea-salt Budgets

Budg kg	Budgets	Flux		Dry Deposition		Below-cloud		In-cloud	
	kg –	Northern	Southern	Northern	Southern	Northern	Southern	Northern	Southern
	d < 1.0 μm	5.834×10 ¹⁰	1.255×10 ¹¹	-2.533×10 ¹⁰	-5.188×10 ¹⁰	-1.644×10 ¹⁰	-3.416×10 ¹⁰	-1.097×10 ¹⁰	-2.061×10 ¹⁰
	d > 1.0 μm	3.156×10 ¹²	6.789×10 ¹²	-2.953×10 ¹²	-6.364×10 ¹²	-1.646×10 ¹¹	-3.583×10 ¹¹	-4.626×10 ¹⁰	-8.397×10 ¹⁰
	Sub Total	3.215×10 ¹²	6.915×10 ¹²	-2.978×10 ¹²	-6.416×10 ¹²	-1.810×10 ¹¹	-3.925×10 ¹¹	-5.722×10 ¹⁰	-1.046×10 ¹¹
	Land Percent	1.22%	0.75%	2.19%	0.97%	4.72%	2.20%	5.43%	1.96%
Sub-	micron Percent	1.81%	1.81%	0.85%	0.81%	9.08%	8.70%	19.17%	19.71%
	Total	1.013>	<10 ¹³	-9.394	×10 ¹²	-5.735	×10 ¹¹	-1.618	×10 ¹¹

The land percent is due to the coastal regions and depends on the model resolutions.

[Erickson and Duce 1988] of 1.0 - 3.0×10¹³ kg

Meteorological Service of Canada Environment Canada Gong et al 2003

Factors for Sea-salt Production

- Production Scheme
- Surface Wind Speed and Frequency Distributions
- Integration Scheme for Size Distributions

AEROCOM Parameters

Scheme: Gong 2003 Wind Speed: ECWMF 6 hr, $1^{\circ} \times 1^{\circ}$ Size Distribution: 24 bins 0.005 – 20.48 μ m

Size Configuration

Sea-salt flux with ECMWF Wind

Kg	Submicron	Super-micron	Global Total	Sub/Total	Sup/Total
Jan	7.81E+09	1.87E+12	1.88E+12		
Feb	8.10E+09	1.94E+12	1.95E+12		
Mar	8.45E+09	2.02E+12	2.03E+12		
Apr	7.85E+09	1.88E+12	1.89E+12		
Мау	8.16E+09	1.96E+12	1.96E+12		
Jun	7.84E+09	1.88E+12	1.89E+12		
Jul	8.34E+09	2.00E+12	2.00E+12		
Aug	8.45E+09	2.02E+12	2.03E+12		
Sep	7.96E+09	1.91E+12	1.91E+12		
Oct	8.14E+09	1.95E+12	1.96E+12		
Nov	7.23E+09	1.74E+12	1.74E+12		
Dec	8.02E+09	1.92E+12	1.93E+12	0.4%	99.6%
Annual	9.63E10	2.31E13	2.32E13	0.4%	99.6%

Meteorological Service of Canad Environment Canada $1.01E13 \rightarrow Gong \text{ et al } 2003$