AeroCom - an overview Michael Schulz LSCE/CEA/Saclay/F Special acknowledgments To Christiane Textor, Sarah Guibert, Stefan Kinne To numerous observation data « provider » To enthousiastic « model colleagues »

ACKNOWLEDGMENTS for funding to EU projects PHOENICS and CREATE

Laboratoire des Sciences du Climat et de l'environnement

AeroCom - Goals

- diagnose aerosol modules of global models
- assemble useful data-sets *for evaluations*
- ⇒ identify (and eliminate) weak components in aerosol modules of global modeling
 ⇒ reduce uncertainty in simulated forcing

'home' website
http://nansen.ipsl.jussieu.fr/Aerocom
(contacts: schulz@lsce.cea.fr or kinne@dkrz.de)

AeroCom – Methodology

•Multicomponent global aerosol models follow AEROCOM protocol

•Simulation years 1996+1997+2000+2001 (AGCMs admitted)

Experiment A – models as they are – (12 models reported so far)
Definition of AEROCOM year 2000 prescribed source scenario
Experiment B – using these sources (2 models reported so far)

•netCDF-nco-IDL image processing at LSCE (with MPIM)

Combination with new data (MODIS, MISR, POLDER, AERONET, etc)
Process analysis to understand differences

Transparency of work-up through web interface to image database
Work-shops (such as 10-12 March in Ispra)

AEROCOM internal working web interface

Surface observations web interface

LIDAR observations vs Model web interface (not yet AEROCOM)

AEROSOL MODELS REPRODUCE GLOBAL DISPERSION OF THE AEROSOL (Example of two good models for year 2000)

AERONET sun photometer observation MODEL SIMULATION at the same place With respect to « the global aerosol »

- How much and why do models differ?
- Which specific problems for which aerosol component?
- How do they compare to measurements?
- Which is THE best model?
- On the scale of continents: Do we understand regions equally well?Why do models and observations differ?
- Which uncertainty on globally averaged aerosol optical properties?
- Can we extrapolate observations with the help of models?
- Whats needed to improve our understanding?

Annual zonal mean, vertical cut, Aerosol Concentration

0.5

-90

-60

-30

0

Latitude

30

60

0.75 0.50

0.25

0.00

-60

-30

0

Latitude

30

60

Parameterisation of hygroscopic particle growth

How much do models differ? EMISSION and LIFETIME -> LOAD -> OPTICAL PROPERTIES

ONE MODEL – DIFFERENT DATA SETS AOD@550nm Angstroem Comp.

Sulphate Conc

OLSCE

Data

8.00

7.0

120

120.

180.

180

OLSCE

Data

MODIS AERONET

GAW,EMEP,IMPROVE

CORRELATION AND SLOPE MODELS vs DIFFERENT DATA SETS AOD@550nm Angstroem Comp. Sulphate Conc

Black Carbon Conc.

3.0

2.5

2.0 value

Organic Carbon Conc. Sea Salt Conc.

scatterplot coefficients for CONC_SO4 (µq.m-3)

World in 2000

1.0

0.8

0.6 coef

0.

0.2

0.0

MATCH

lation

Taylor Diagrammes - condense info of spatio-temporal varying fields Use geometric relation between $RMS - STDDEV - CORRELATIO^{N}$ to judge model quality

Global comparison Aerosol Optical Depth MODELS vs DATA Monthly values for year 2000

A: ARQM_clim

G: KYU_D_2000

E: LOA_D_2000 J:LSCE_2000

With respect to « the global aerosol »

- How much and why do models differ?
- Which specific problems for which aerosol component?
- How do they compare to measurements?
- Which is THE best model?
- On the scale of continents: Do we understand regions equally well?
- Why do models and observations differ?
- Which uncertainty on globally averaged aerosol optical properties?
- Can we extrapolate observations with the help of models?
- Whats needed to improve our understanding?

Taylor diagrammes for continental regions / MODELS VS MODIS 2000

Taylors continental regions / MODELS VS MODIS 2000

G: KYU_D_2000 E: LOA_D_2000 J : LSCE_2000 I: MATCH_2000 MO: MODIS_2000 Y: Mean X: Median H: PNNL_2000 F: UIO_CTM_2000 B: UIO_GCM_clim C: ULAQ_T_clim D: UMI_D_1997

A: ARQM_clim

MODIS

MODIS

MODIS

A: AROM G: KYU_I E: LOA_C J: LSCE I: MATCH MO: MOD Y: Mean X: Median H: PNNL F: UIO_C B: UIO_G C: ULAQ D: UMI D

MODIS

MODIS

Taylor diagrammes for oceanic regions / MODELS VS MODIS 2000

MODIS

MODIS

Do models resemble each other more than models resemble observations?

A: ARQM_clim G: KYU_D_2000 E: LOA_D_2000 J : LSCE_2000 I: MATCH_2000 MO: MODIS_2000 Y: Mean X: Median H: PNNL_2000 F: UIO_CTM_2000 B: UIO_GCM_clim C: ULAQ_T_clim D: UMI_D_1997

Model fields taken as reference data set

With respect to « the global aerosol »

- How much and why do models differ?
- Which specific problems for which aerosol component?
- How do they compare to measurements?
- Which is THE best model?
- On the scale of continents: Do we understand regions equally well?Why do models and observations differ?
- Which uncertainty on globally averaged aerosol optical properties?
- Can we extrapolate observations with the help of models?
- Whats needed to improve our understanding?

EXTRAPOLATING OBSERVATIONS WITH THE HELP OF SATELLITES MODELS?

 $MODIS / MODIS@AERONET \sim 0.7 * MODIS@AERONET / AERONET \sim 1.0$ = 0.7 $LSCE / LSCE@AERONET \sim 0.5 * LSCE@AERONET / AERONET \sim 0.7$ = 0.4 $MATCH / MATCH@AERONET \sim 0.5 * MATCH@AERONET / AERONET \sim 1.1$ = 0.55 $KYU / KYU@AERONET \sim 0.4 * KYU@AERONET / AERONET \sim 1.15$ = 0.46

With respect to « the global aerosol »

- How much and why do models differ?
- Which specific problems for which aerosol component?
- How do they compare to measurements?
- Which is THE best model?
- On the scale of continents: Do we understand regions equally well?
- Why do models and observations differ?
- Which uncertainty on globally averaged aerosol optical properties?
- Can we extrapolate observations with the help of models?
- Whats needed to improve our understanding?

AEROCOM shall establish modelled uncertainty range for aerosol parameters relevant to impact on climate

Future goals

Add data – investigate effect of sampling errors (eg daily vs monthly Add further model parameter into analysis (absorption, size...) **Analyse differences between models and observations Document model progress+quality (Harmonised evaluation tools?)** Establish an aerosol climatology data base (best model=average ?)

Harmonise work on aerosol emission scenarios Extend towards cload-aerosol interaction?