Parameterization and Uncertainty of aerosol processes AeroCom ExpA

> Christiane Textor Michael Schulz Sarah Guibert Stefan Kinne

# Outline of the talk

- Emissions
- · Concept of uncertainty
- Load
- Residence times
- Sink process analysis

| Model   | Global model                                  | Horizont. Resolution<br>(x y) (lon lat) | Vertical Resolution<br>(# of levels) (type) | Aerosol Module                       | number of bins or<br>modes                                | aerosol mixing                                    | Aerosol dynamics                                |
|---------|-----------------------------------------------|-----------------------------------------|---------------------------------------------|--------------------------------------|-----------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|
| ARQM    | CTM<br>Canadian GCMIII                        | 128x64<br>2.81°x2.81°                   | 32<br>hybrid sigma-p                        | bin                                  | <b>17</b><br>(12 DU + 5 mixed)                            | DU + internal                                     | none                                            |
| DLR     | CM                                            | 96x48<br>3.75°x3.75°                    | 19<br>sigma                                 | modal, sigma fix                     | <b>2</b><br>nucl+acc                                      | internal                                          | aging of BC and POM<br>SO4 microphysics         |
| GISS    | Spara 1                                       | 46x72<br>5°x4°                          | 20<br>sigma                                 | bin                                  | <b>10</b><br>2 SS, 4 DU, 1BC, 1<br>POM, 1 SO4             | external                                          | aging of BC and POM                             |
| GOCART  | e C                                           | - 91                                    | 30<br>sigma                                 | modal, sigma fix                     | <b>17</b><br>8 DU, 4 SS, 2 BC,<br>2POM, 1 SO4             | external                                          | aging of BC and POM                             |
| KYU     | GČN<br>CCSR/NIES/FR<br>GCM / SPRINTARS        | 9/ */                                   | 20<br>sigma                                 | modal, sigma fix                     | <b>17</b><br>10 DU, 4 SS, 1 BC,<br>1 BCPOM, 1 SO4         | external<br>partly internal for<br>BC/ POM        | none                                            |
| LSCE    | GCM<br>LMDzT 3.3                              | 32 N                                    | 74                                          | modal, sigma fix                     | <b>5</b><br>acc. sol+insol, coa<br>sol+insol, sup.coa sol | external mixture of internally mixed modes        | aging of BC and POM                             |
| LOA     | GCM<br>LMDzT 3.3                              | 96x72<br>3.75°x2.5°                     | The                                         | bin                                  | <b>17</b><br>2 DU, 10 SS, 2 BC,<br>2POM, 1 SO4            | external                                          | aging of BC and POM                             |
| МАТСН   | CTM<br>MATCH v 4.2                            | 192x94<br>1.9°x1.9°                     | siy.                                        | *                                    | <b>8</b><br>4DU, 1SS,1 BC,<br>1POM, 1SO4                  | external                                          | aging of BC and POM                             |
| MPI HAM | GCM<br>ECHAM5.2                               | 192x96<br>1.8°x1.8°                     | 31<br>hybrid sigma-p                        | 1/2                                  | 7                                                         | external mixture of internally mixed modes        | Nucl., Coag.,<br>Condensation<br>Thermodynamics |
| MOZGN   | CTM<br>MOZART v2.5                            | 192x96<br>1.9°x1.9°                     | 28<br>sigma                                 |                                      |                                                           | external                                          | aging of BC and POM                             |
| PNNL    | GCM<br>MIRAGE 2 / derived<br>from NCAR CAM2.0 | 144x91<br>2.5°x2.0°                     | 24<br>hybrid sigma-p                        | modal, sigma fix                     | 100                                                       | snal mixture of<br>rixed modes                    | SO4 microphysics                                |
| TM5     | CTM<br>TM5                                    | 60x45<br>6°x4°                          | 25<br>hybrid sigma-p                        | modal, sigma fix                     | 3 SS, 2 L<br>POM, BC, SL                                  | e//                                               | none                                            |
| UIO_CTM | CTM<br>OsloCTM2                               | 128x64<br>2.81°x2.81°                   | 40<br>sigma                                 | bin                                  | <b>20</b><br>8 DU, 8 SS, BC, POM,<br>bioburn BCPOM, SO4   |                                                   | C and POM                                       |
| UIO_GCM | GCM<br>CCM3.2                                 | 128x64<br>2.81°x2.81°                   | 18<br>hybrid sigma-p                        | external: modal fix<br>internal: bin | <b>55</b><br>12 modes<br>43 bins                          | 8 presch.<br>4 transported<br>4 transported inte. | d POM                                           |
| ULAQ    | CTM<br>ULAQ                                   | 16x19<br>22.5°x10°                      | 26<br>log-p                                 | bin                                  | 41                                                        | external                                          | C and POM<br>S. Jicrophysics                    |
| UMI     | CTM<br>IMPACT                                 | 144x91<br>2.5°x2°                       | 30<br>sigma                                 | bin                                  | 13                                                        | external                                          | none                                            |



# Aerosol Emissions in AeroCom Exp A



Year 2000 if available

# Emissions from all models



"Uncertainty": scatter of model results

Uncertainty

#### Two-Third-Range around all-models-median



## Standarddeviation of normalized deviation from all-models-mean



Normalization with  $data = \frac{model-all models mean}{all models mean} *_{100}$ 

Uncertainty

Average absolute deviation from the all-model-mean of the normalized model results



Uncertainty

Normalization with all-models-mean  $data = \frac{model - all models mean}{all models mean} * 100$ 



#### Uncertainty



median

uncertainty

Definition: twice the average absolute deviation from the all-models-mean of the normalized data

Uncertainty = 
$$\frac{2}{N}\sum_{i=1}^{N} |data|$$







#### Sulfur sources/Uncertainty



The uncertainty of the sulfur sources is caused by chemistry, not be the emissions.

Mass





data

mean

median

uncertainty

| species | mean<br>[Tg] | median<br>[Tg] | uncertainty<br>[%] |
|---------|--------------|----------------|--------------------|
| DUST    | 19.83        | 19.97          | 80                 |
| SS      | 8.80         | 8.25           | 75                 |
| SO4     | 1.99         | 1.98           | 38                 |
| BC      | 0.23         | 0.21           | 48                 |
| POM     | 1.70         | 1.73           | 36                 |
| AER     | 32.46        | 30.12          | 63                 |

Mass



#### Uncertainty Residence time





— norm.data

- \* mean
- median
- uncertainty

#### dominant sink process: wet or dry\* deposition?



Sink processes: analysis for Sea Salt

Mass fraction **f**<sub>i</sub> of sinks: wet/total and dry/total



\* dry : sedimentation + turbulent dep.

fastest sink process? Sink processes: analysis for Sea Salt

# Definition of a global mean effective sink rate k, inverse of residence time ${\cal T}$



The effective rate constants of the single processes are additive.

$$-\frac{dm}{dt} = k_{wet} m + k_{dry} m$$





Sink processes: analysis for Sea Salt



# Sink processes: analysis for Sea Salt



# Sink processes: analysis for Dust



# Sink processes: analysis for Dust



#### Sink processes: analysis for large particles

Dry dep rate vs. Supercoarse mass fraction



## Sink processes: analysis for Sulfate



• UMI

# Sink processes: analysis for Sulfate



UMI

#### Sink processes: analysis for Sulfate





Wet dep rate increases with increasing global annual precip rate.

#### Sink processes: analysis for BC and POM

Mass fraction  $f_i$  of sinks: wet/total and dry/total



#### Wet dep is dominant in all models except for ARQM.

# Sink processes: analysis for BC and POM



• UMI







 $POM \approx 2/3$  SO4 wet in most models

Sea Salt >  $SO_4$ 



## Uncertainty: Residence time $\tau$

![](_page_31_Figure_1.jpeg)

Uncertainty

#### Uncertainty: Residence time due to individual sink processes

![](_page_32_Figure_1.jpeg)

- normalized data
- \* mean
- median
- uncertainty

# Conclusions

Sink process analysis - mutually dependent effets of:

- spatial distribution of emissions
- vertical and horizontal transport
- precipitation rate
- particle sizes
- parameterization of processes

#### Uncertainties:

> are in general greater for sea salt and dust:

- sources interactively calculated
- meteorology
- particle sizes
- spatial distribution
- two sink processes
- > Sulfate: atmospheric chemistry