

AERONET-based Estimates of Clear-sky Direct Solar Radiative Effect

GA Tech: Mi Zhou, R.E. Dickinson : Hongbin Yu GSFC/NASA: O. Dubovik, B.N. Holben, & AERONET group

Goals

 Derive efficiency of aerosol direct radiative effect (ADRE) for key aerosol types

 Generate a database for evaluating satellite/modelbased ADRE assessments

ADRE Calculations – aerosol data

- AERONET aerosol
 - τ, ω, g (λ=440, 670, 870, 1020 nm)
 - total, fine-mode
 - monthly (climatology, 2000, 2001, 2002)
- Assumptions & uncertainties
 - $\alpha (\lambda > 1020nm) = \alpha (870-1020nm)$ $a factor of 2 change of <math>\alpha (\lambda > 1020nm), < \pm 4\%$
 - $\omega (\lambda > 1020 nm) = \omega (\lambda = 1020 nm)$ if $\omega (\lambda > 1900 nm) = 0.2, 3 \sim 8\% (TOA), 2 \sim 4\% (SFC)$

** if use properties at 550 nm only Overestimate TOA forcing by 20%, surface forcing by 10%.

ADRE Calculations – surface albedo * MODIS broadband land albedo – 0.3~0.7 μm

– **0.7~5.0** μm

10% underestimate of vegetation albedo at 0.7-1.3 μm

 \Rightarrow <7% overestimate of forcing

ADRE Efficiency for Key Aerosol Types

ADRE Efficiency (E)

- $\mathbf{E} = \Delta (\mathbf{F} \downarrow - \mathbf{F} \uparrow) / \tau_{550}$ (TOA & surface)

 Dependence on optical depth, latitude, season

E decreases with increasing AOD;

greater in high latitudes and winter than in low latitudes, and summer

<u>Site Selection:</u> full annual cycle of aerosol climatology

Aerosol Type	Region	AERONET Stations
Biomass	S. America	Alta_Floresta
Burning	S. Africa	Mongu, Skukuza
Mineral Dust	albedo~0.1	Capo_verde, Baharain
	albedo~0.2	Ilorin, Nes_Ziona
	albedo:0.3~0.35	Banizoumbou, SEDE_BOKER, Solar_Village
Pollution	N. America	COVE, GSFC, Oyster, MD_Science_Center, SERC, Stennis, Wallops
	W. Europe	Ispra, Lille, Moldova, Venise
	E. Asia	Anmyon, NCU_Taiwan, Shirahama

Fine-mode vs All-mode

🛿 All-mode, SSA 🔳 Fine-mode, SSA 📓 All-mode, ASY 🔲 Fine-mode, ASY

• Fine mode has a larger single-scattering albedo (SSA), smaller asymmetry factor (ASY)

Clear-sky ADRE Efficiency

A large range of ADRE efficiency:

- TOA = -15 ~ -50W/m2; SFC = -45 ~ -90W/m2

 Fine mode aerosol has a more negative forcing at TOA, a less negative forcing at surface (larger SSA & smaller asy. factor)

E_{TOA}/E_{SFC} vs. SSA

Evaluate Satellite/Model-based Aerosol Direct Effect

- CCSP project: "A review of measurement based assessment of aerosol radiative forcing and aerosol sources."
 - Coordinators: Yoram Kaufman & Mian Chin (NASA GSFC), Graham Feingold (NOAA ETL)

• Goals:

- Assessments of the aerosol distribution & direct radiative effects using satellites supplemented by chemical transport models.
- Assessment of the anthropogenic component, using satellite data and models.
- Evaluation of the assessments against surface network data and field experiments. Comparison of the assessments to model estimates.

Global & Regional ADRE Comparisons

- Clear-sky, solar, monthly average for 2001. Using different aerosol optical depths:
 - GOCART: GOCART alone
 - MODIS: only gaps filled with GOCART
 - MISR: only gaps filled with GOCART (if any)
 - MO_GO: MODIS + GOCART integration (Kalman filter)
 - MO_MI_GO: MODIS (O) +MISR (L) +GOCART integration
 - ** Other aerosol parameters from GOCART; land albedo from MODIS, ocean albedo from Jin et al., 2004.
- Other clear-sky ADRE estimates for intercomparison
 - MODIS_Remer: AOD + aerosol models used (2001-2004, Remer)
 - CERES_SSF: NOAA NESDIS radiance (2000, Loeb)
 - CERES_MODIS: MODIS radiance (2000, Loeb)
 - Sundar Christopher's estimate: CERES+MODIS
 - SPRINTARS: clear-sky simulations (2001, Takemura)

Divisions of 13 Regions

Land / Ocean separately, seasonal average

* comparisons for "plumes" (easy to connect with intensive field experiments)

Evaluation of Satellite/Model-based Forcing Estimates

2001, AERONET AOD > 0.2

MO_MI_GO: MODIS (ocean) + MISR (land) + GOCART integration

What Cause Differences?

Need to extract clear-sky asymmetry factor

THANKS!