

Global shortwave aerosol direct radiative forcing from MODIS measurements for mineral dust, marine aerosol, biomass-burning and industrial pollution.

> Nicolas Bellouin, Olivier Boucher, and Jim Haywood November 2004

The shortwave direct aerosol radiative forcing

What is needed?

- 1. The aerosol optical thickness for each type
- 2. The aerosol optical properties for each type
- 3. The surface albedo

Step 1

Get the optical thickness for mineral dust, marine aerosol and anthropogenic aerosols

Solve $\tau_{total} = \tau_{dust} + \tau_{marine} + \tau_{biomass/pollution}$

- Help wanted!
- Ångström exponent α spectral dependence of the extinction
- Fine fraction r fraction of the OT due to the accumulation-mode particles
- Surface wind speeds give a rough estimate of the marine aerosol OT
- TOMS aerosol index detects UV-absorbing aeros

detects UV-absorbing aerosols (i.e. dust and biomass-burning)

Bellouin et al., GRL, 2003

The MODIS algorithm over clear-sky oceans

Measurements from the Met Office C-130 Osborne and Haywood, *Atmos. Res.,* 2004

Experiment	Aerosol type	r	
SHADE	Mineral dust	0.67	
SAFARI 2000	Aged biomass-burning (over ocean)	0.97	
	Fresh biomass-burning (over land)	0.95	
TARFOX	Industrial pollution	0.88	
ACE-2	Industrial pollution, mixed with marine aerosol	0.60	
	Marine aerosol	0.16	

Get a *sensible* estimate of the marine aerosol OT when dust or biomass/pollution is identified.

Linear relationship from Smirnov et al., *JGR, 2003*

In the algorithm, wind speeds are provided by SSM/I.

The MODIS algorithm: Data for September 2002

MODIS aerosol optical thickness at 550 nm - September 2002

The MODIS algorithm: Data for September 2002

0

2

4

TOMS Aerosol Index

SSM/I wind speeds

The MODIS algorithm: Results for September 2002

© Crown copyright 2004

Distributions of optical thicknesses for 2002

Step 2

Estimate the radiative forcing from the discriminated optical thicknesses

From the optical thickness to the radiative forcing

From the optical thickness to the radiative forcing

Aerosol optical properties

Aerosol	AERONET site	ω_0 at 550 nm	
Dust	Cape Verde	0.97	
Marine aerosol	Hawaii	0.98 (0.99)	
Industrial pollution	Greenbelt, USA	0.97	
Industrial pollution	Créteil, France	0.93	
Industrial pollution, biomass-burning	Mexico City, Mexico	0.88	
Industrial pollution, biomass-burning	Maldives (INDOEX)	0.89	
Biomass-burning	Brazil	0.90	
Biomass-burning	Zambia	0.86	

Biomass-burning and pollution properties

- The optical thickness is derived in the same way for all biomass-burning and pollution aerosols.
- But optical properties differ according to geographic location, using regional boxes.

Surface albedo

Over ocean, the albedo is computed using *Cox and Munk* [1954]

Over land, the albedo is derived from MODIS measurements (products MOD43B3, *Schaaf et al.,* 2002) and corrected for aerosol effects.

MODIS: Monthly average for February 2002

Top of atmosphere

Mineral dust

Marine aerosol

Biomass+Poll.

Absorption

0 1----- 1Œ

400

MODIS: Monthly averages for September 2002

Top of atmosphere

Mineral dust

Marine aerosol

Biomass+Poll.

Page 19

MODIS: Global clear-sky averages for 2002

Mineral dust	TOA (Wm ⁻²)	Surface (Wm ⁻²)	Abs. (Wm ⁻²)	τ (550 nm)	E (Wm ⁻² / unit τ)
Global	-0.48	-0.57	0.09	0.009	-56
Ocean	-0.71	-0.85	0.14	0.013	-56
Marine aerosol					
Global	-3.61	-4.25	0.64	0.076	-47
Ocean	-5.35	-6.31	0.95	0.113	-47
bb + poll					
Global	-2.39	-5.43	3.04	0.093	-26
Ocean (+)	-0.52	-1.18	0.66	0.014	-37
Land (-)	-6.18	-14.06	7.88	0.255	-24

(+) lower bound of anthropogenic RF (-) upper bound of anthropogenic RF

Conclusion

- Our algorithm applied to MODIS data does a good job distributing the total optical thickness to mineral dust, marine aerosol, and biomassburning and pollution aerosols.
- Choosing realistic aerosol properties from AERONET measurements improves the confidence in the estimated radiative forcings.
- Paper to be submitted soon.