
IPCC (2001)

Hansen et al. (1981)

What impact has Aerosol Science had on Climate Science?

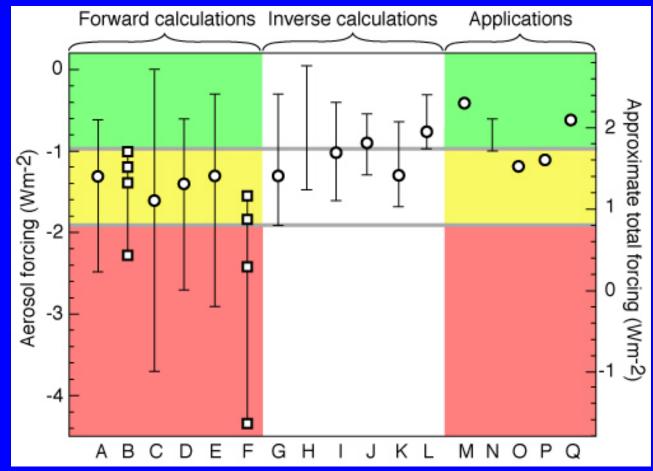
Questions in play for Climate Science

1. Prove or disprove negative forcing larger than -2 W/m2

Do we know, independently of the temperature record, that there has been a positive and substantial forcing of climate over the industrial era?

2. Prove or disprove negative forcing larger than -1 W/m2 Do climate models simulate the 20th century temperature record for the right reasons?

3. Determine aerosol forcing to within +/-0.5 W/m2


Based on the 20th century temperature record, what is the sensitivity of Earth's climate to external forcing?

<u>Climate</u> Science Requirements

(if Aerosol Science is to have an impact)

- 1. Prove or disprove negative forcing larger than -2 W/m2 >>> paradigm test
- 2. Prove or disprove negative forcing larger than -1 W/m2 >>> sensitivity test

3. Determine aerosol forcing to w/i +/- 0.5 W/m2 >>> sensitivity quantification [Schwartz, 2004] Forward calculations Inverse calculations Applications

Global forcing due to clear-sky aerosol

direct aerosol forcing of climate (DAFC)

DAFC = $(1-A_c) < \delta(x,y,t) f_f(x,y,t) f_{af}(x,y,t) E_a(x,y,t) >$

- global, annual average
- Α_c δ global fractional cloud cover
 - aerosol optical depth

E

Ea

forcing efficiency per unit optical depth

satellites

- ${{{\mathbf{f}}_{{\mathbf{f}}}}\atop{{{\mathbf{f}}_{{\mathbf{af}}}}}}$ fine-mode fraction of δ
 - anthro. fraction of fine-mode
 - forcing efficiency of anthropogenic aerosol

Uncertainty Requirements for Each Parameter

Reference Zero-D Model

climate forcing DAFC = $(1-A_c) <\delta > <f_f > <f_{af} > <E_a > +$ correlations 0.4 0.13 0.5 0.6 40 0?

Corresponding Uncertainty Requirements

DAFC target	<δ>	<f<sub>f></f<sub>	<f<sub>af></f<sub>	<e<sub>a> (W/m²/δ)</e<sub>
2 W/m ²	+/- 0.09	+/- 0.3	+/- 0.5	+/- 30
1 W/m ²	+/- 0.04	+/- 0.17	+/- 0.24	+/- 15
0.5 W/m ²	+/- 0.02	+/- 0.09	+/- 0.12	+/-7

Forcing Efficiency per Unit Optical Depth, E

potentially robust retrieval product

e.g., ratio of

- broadband TOA forcing retrieval from CERES
- δ (550) retrieval from MODIS

widely reported

- many studies in literature

critical for translating δ observations to forcing estimates

- δ observations provide a strong observational anchor
- hope is that E is relatively constant over large regions and/or can be predicted with models

DAFC	<e<sub>a></e<sub>	
target	error	
2 W/m ²	+/- 30	
1 W/m ²	+/- 15	
0.5 W/m ²	+/- 7	

Factors controlling forcing efficiency

Diurnally-averaged E for an optically thin aerosol layer: (illustrating dependencies on aerosol properties, ambient RH, and geophysical parameters)

$$E = -DS_0 T_{at}^2 \omega \beta_{up} \left((1 - R_s)^2 - \left(\frac{2R_s}{\beta_{up}} \right) \left(\frac{1}{\omega} - 1 \right) \right)$$

<u>geophysical variables</u> (functions of location, time, height)

D daylight fraction
T_{at} atmospheric transmission
R_s surface reflectivity

<u>aerosol variables</u> (functions of size, comp., RH)

- ω single scattering albedo
- β_{up} upscatter fraction

 $(S_0 \text{ is the solar constant})$

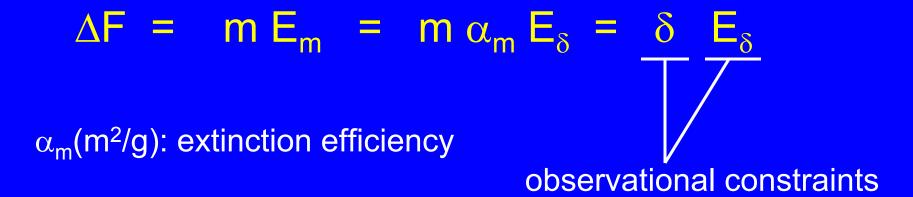
Forcing efficiency: definitional clarity

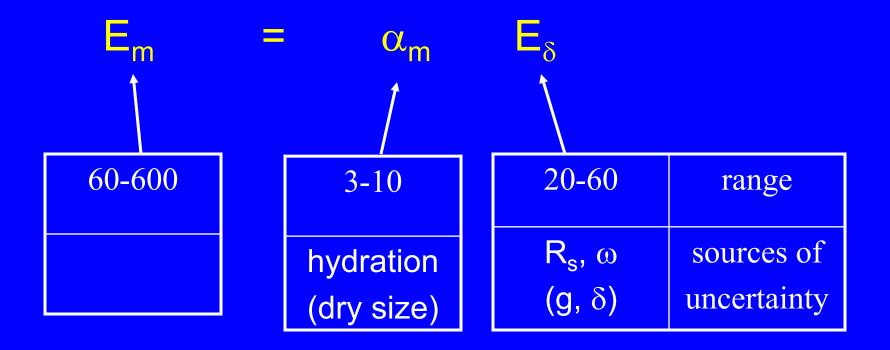
$E = \frac{\Delta F (W/m^2)}{\text{aerosol optical depth}}$

Comparison of previous studies requires common definition. Here . . .

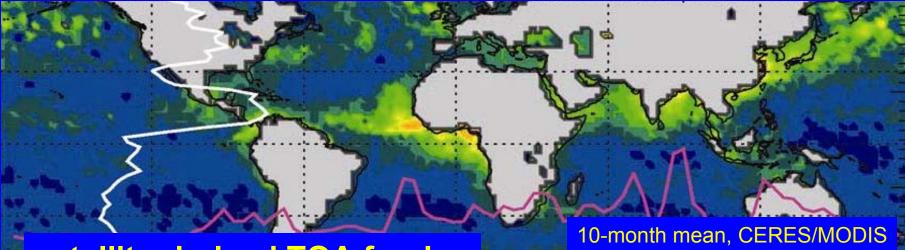
- top-of-atmosphere
- clear-sky regions only
- 24-hour average
- flux is shortwave (solar) only
- optical depth is at 550 nm wavelength

Forcing efficiency: current estimates


Method	Domain	Number	Number		δ	DARF	E
		of	of		(550nm)	W/m2	W/m2/ δ
		studies	regions				
modeling	global	2			0.098	-2.4	-25
	oceans				(12%)	(28%)	(16%)
satellite	global	5	me	ean →	0.125	-5	-40
	oceans		std/	mean —	► (13%)	(8%)	(17%)
satellite	regional,	1	6		0.112	-5.1	-44
	annual				(45%)	(45%)	(30%)
satellite &	regional	3	3		0.94	-23	-27
sunphot.	intensives				(82%)	(76%)	(11%)
				σ _{sp}	b	ω	
				m-1			
in-situ	regional,	1	4	39	0.121	0.938	A-81
	annual			(52%)	(8%)	(3%)	(2%)
in-situ	regional,	4	6	77	0.111	0.877	
	intensives			(93%)	(9%)	(8%)	14%


RED: extensive parameters

BLUE: intensive parameters


from Table 1 of Anderson et al. (2004)

Relation to component mass forcing efficiency

What fraction of <u>climate</u> (anthro) forcing is over the ocean???

satellite-derived TOA forcing

10-month mean, CERES/MODIS [Christopher and Zhang, 2004]

Sept mean, MIRAGE [courtesy of S. Ghan]

Forcing Efficiency per Unit Optical Depth, E

(more) Issues

No explicit validation program (though much validation work has been done for flux and δ retrievals)

Retrieval (so far) has only been applied to the ocean

Sample fraction over the global ocean is generally small raising the potential for bias.

Results depend strongly on cloud-clearing scheme [Loeb et al., 2004]

Need models or methods to go from observables to desired parameters:

- instantaneous to diurnal average
- E to E_a

DAFC	<e<sub>a></e<sub>
target	error
2 W/m ²	+/- 30
1 W/m ²	+/- 15
0.5 W/m ²	+/- 7