



# CALIPSO

# Dave Winker

# NASA LaRC, Hampton, VA





CALIPSO will fly as part of the Aqua constellation (A-train) to provide observations needed to:

- Improve understanding of the role of aerosols and clouds in the processes that govern climate responses and feedbacks
  - Direct and indirect aerosol effects
  - Cloud forcing and feedbacks





- Improve the representation of aerosols and clouds in models
  - Improved climate predictions
  - Improved models of atmospheric chemistry



1-3 December 2004, GISS





#### Aerosol Direct Radiative Forcing

- CALIPSO aerosol profiles
  - aerosol lifetime dependent on height
  - radiative effects depend on underlying reflectance
  - observe aerosol above cloud, below thin cirrus
- A-train: CALIPSO + MODIS + CERES
   improved characterization of direct forcing





### Aerosol Indirect Radiative Forcing

- CALIPSO cloud and aerosol profiles

   unique ability to determine if cloud and aerosol are in the same layer.
- A-train: add MODIS + CERES
   cloud microphysics, optics, radiation
- A-train: add AMSR, Cloudsat radar
   adds LWP plus drizzle.

705 km, sun-synchronous orbit (1:30 PM) Three co-aligned instruments:

- CALIOP: polarization lidar
  - 532 nm || and ⊥, 1064 nm
  - 0 40 km altitude, 30 60 m
- IIR: Imaging IR radiometer
  - 8.6 um, 10.5 um, 12 um
  - 64 km swath, 1 km IFOV
- WFC: Wide-Field Camera
  - 645 nm

•

•

•

61 km swath, 125 m IFOV

**Calipso Footprint** 









Cirrus Cloud Data - 12/08/03

Launch readiness: 26 May 2005 1<sup>st</sup> light: July '05 Release of β-data: fall '05



# **Lidar Algorithm Flow**





AEROCOM meeting 1-3 December 2004, GISS





| Data<br>Product | Product Name                       | Primary Parameters                                                                                                                                                        | Maximum<br>Altitude | Resolution      |                      |
|-----------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------|----------------------|
|                 |                                    |                                                                                                                                                                           |                     | vertical        | horizontal           |
| DP 1.1          | Level 1B Profiles                  | 532 $\perp$ +   , 532 $\perp$ , 1064 attenuated backscatter                                                                                                               | 40 km               | Full Resolution |                      |
| DP 2.1A         | Cloud and Aerosol<br>Layer Product | Cloud:<br>base and top height, optical depth,<br>I/W phase, IWP<br>Aerosol:<br>base and top height, optical depth,<br>avg depolarization and color ratio,<br>aerosol type | 20 km<br>30 km      | 30 m<br>30 m    | 1/3, 1, 5 km<br>5 km |
| DP 2.1B         | Aerosol Profile<br>Product         | 532/1064 nm backscatter,<br>extinction, depolarization                                                                                                                    | 30 km               | 120 m           | 40 km                |
| DP 2.1C         | Cloud Profile Product              | 532 nm backscatter, extinction, depolarization, IWC                                                                                                                       | 20 km               | 60 m            | 5 km                 |
| DP 2.1D         | Vertical Feature Mask              | cloud mask, ice/water phase aerosol mask, type                                                                                                                            | 20 km               | Full Resolution |                      |











- Uncertainties in  $\tau_a$  are due to  $S_a$  (mostly) and calibration (slightly)
  - Calibrate to ~2%
  - Constrain S<sub>a</sub> to ~30%
- lidar excels at low optical depth:  $\tau < 0.2$ 
  - complements passive capabilities



AEROCOM meeting 1-3 December 2004, GISS





- The CALIPSO 2-λ algorithm (CAD) correctly identifies cloud and aerosol (note overlap).
  - A 1- $\lambda$  algorithm (CPL) misidentifies some cloud as aerosol, resulting in:
    - · Biases in aerosol direct forcing
    - Ambiguities in assessing indirect forcing



Separation of cloud and aerosol using  $\chi' = \beta'_{1064}/\beta'_{532}$ 



To a large degree, cloud and aerosol can be separated by scattering strength. There is a region of overlap, however, where  $2-\lambda$  measurements are necessary. It is just this region which is critical to determining biases in aerosol direct forcing, to aerosol indirect forcing, and to aerosol-cloud interactions,

AEROCOM meeting 1-3 December 2004, GISS







AEROCOM meeting 1-3 December 2004, GISS



# **Aerosol sphericity profiles**



18-19 March 1998 (Tokyo)



CALIPSO depolarization profiles:

- provide information on aerosol type

-- aid in discrimination of aerosol and cloud

Figure courtesy of T. Murayama

AEROCOM meeting 1-3 December 2004, GISS





- Vertical distribution/layering  $\rightarrow$  constraints on transport
- Expands AOD available from passive, observations :
  - at night, polar regions, under thin cirrus
- Greater sensitivity to low AOD  $\rightarrow$  constraints on removal mechanisms
- Better cloud masking
  - reduction of cloud biases
  - assessment of cloud proximity effects
  - assessment of biases from "invisible" cirrus
- Height, sphericity, size  $\rightarrow$  information related to aerosol type



## Orbit: 705 km, 98° inclination, 1:30 PM equator crossing

A few A-train synergies:

CALIPSO + CloudSat: cloud profile product CALIPSO + CERES + MODIS: surface radiative fluxes product CALIPSO + MODIS + OMI + PARASOL + CERES: aerosol direct forcing add: AMSR + CloudSat (LWP, drizzle): aerosol indirect forcing