

aerosol optical thickness (... or aerosol optical depth)

Overview

- available data
 - is there a superior act data-set ?
 - AERONET for global modeling ? (scale issues)
- simulations
 - what is takes to simulate aot in global modeling
- comparisons
 - global and regional differences

available satellite data-sets

Satellite Ad

Advantage

Disadvantage

AVHRRhistoric recordTOMShistoric record

MODISsmall pixelMISRaltitude infoPOLDER

SEAWIFS GOES/MSG high temporal calibration, not over land large (50km) pixel height or abs. assumed failure over deserts temporally sparse short record, over land: less sens. to large sizes not over land, no IR ch. less detail with b-bands

- what data should be used?
 - can local quality data (e.g. AERONET) assist ?

global fields

Mo: MODIS	composites:		
Mi: MISR	12:Mo,Mi		
To: TOMS	13:Mo,To		
Av: AVHRR			
Po: POLDER	Ae:Aeronet		

difficult to depict a best global retrieval ⇔composite needed

a MODIS (ocean) MISR (land) combination seems promisingbut differences to AERONET still exist

generally larger than AERONET, particular in urban regions

seasonal comparisons at AERONET

first impressions

- MODIS best choice over the oceans ... but too low in dust outflow regions (high aot 'filtered as' clouds)
- MISR most complete land cover ... while biased high over oceans (poor temporal sampling at ca 1/week)
- MODIS (ocean) / MISR (land) combination the 'best' satellite product is generally larger than AERONET ... but too low during the biomass burning season

open issues:

- discrepancy to AERONET (A-NET clear-sky bias ?)
- quality of retrievals of low aots in remote regions
- is it 'fair' to compare point data with regional data?

test regional representation

- use spatial information of satellite data
 - to relate local measurement detail to
 - coarse gridded data-sets
 - coarse resolution data in global modeling
- how ?
 - compare averages for different scales
 - agreement ... indicates a 'useful' site
 - bias: 'useful' site after a bias adjustment
 - highly variable (season/years) : leave off comparison ... unless secondary data exist

Comparison of

- 300*300km data
- 100*100km data
- 10*10km data
- GSFC (urban)
 - 20% above the regional average

Mongu (biomass)

 good match for the biomass season (Jul-Nov)

⇐ at the bottom are AERONET-MODIS comparisons (2001) note: MODIS statistics are very poor!

needed scaling activities

- for different spatial domains a data-base of simultaneous satellite retrievals over AERONET sites is needed
- satellite requirements:
 - small (~1km) pixel retrievals at regional coverage
 - sufficient data (for seasonal /annual dependence)
 - coverage of all AERONET sites (incl. desert sites)

MODIS and MISR data are a start ... although their smallest pixels size at 10.0 and 17.6 km is too large to represent 'truly' local characteristics

aerosol (in global) modeling a 4 Step process

Tuning opportunities !

 better aerosol modules in all major climate models distinguish SU, SS, DU, OC, BC

many processes and assumptions (⇒ new errors ?)

su-sulfate, ss-seasalt, du-dust, oc-org.carb, bc-soot

one bad error is sufficent to destroy a good effort

 there are always way to 'adjust' to the globally (annual) averaged aot of satellites

since the last year: more component models have appeared models seem to converge towards one annual global average

this agreement is encouraging - are we making progress?

quantify global uncertainty

- max/min factors of 15 (* 13 'no extremes') models with aerosol component modules
- different min/max factors for aot and mass demonstrate MEE-differences
- these are still global annual averages!

	mass max/min	mass* max/min	aot max/min	aot * max/min
SU	2.4	1.9	3.8	2.1
BC	3.3	2.1	11	3.2
ОС	3.5	1.5	4.0	2.1
DU	14	5.5	8.8	4.1
SS	6.0	2.6	7.4	3.6
ТО	2.6	1.9	2.6	1.9
f frac*	3.0	2.1	2.3	1.5

* ffrac: fine mode (sizes >1 µm) fraction

dust and sea-salt are associated with largest disagreements good agreement for OC surprises ("if uncertain, look what others do")

max/min

ratios (10 central models)

- aot (total) а
- dry mass [g/m2] -0 m
- *mee (=a/m)* r
- An Angstrom value
- W aero water mass -D dust
- -S sulfate
 - org. carbon
 - black carbon

19 global models

- -N seasalt

-B

accumulation mode fraction

bc/oc ratio

w0 ss-albedo

absorption aot

central uncertainty

max/min factor (19 models)

20,00

ab

cr

-f

differences among models vary by region

compositional differences (absorption) are even larger

we have a modeling problem !

why these differences ?

- input (emission data, meteorology)
- aerosol processing! (clouds, chemistry, transport)
- assumptions (size, water uptake) ... lack of data

what to do?

- acquire quality data (determine data accuracy)
- diagnose models (comparisons to data)
- assure comparability (same input)

... finally the "median" model

0,00

aerosol optical depth (550nm)

0.80

march

aerosol optical depth (550nm)

june

0,00

aerosol optical depth (550nm)

september

aerosol optical depth (550nm)

december

0,00

S

М

aerosol optical depth (550nm)