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MFRSR instrument
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MFRSR spectral sensitivity
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MFRSR networks

Southern Great Plains 
Network (DOE ARM)
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Gaussian statistics of 
aerosol optical thickness
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Two-point statistics,
scale invariance 
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Structure functions:

Power Spectrum:
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is a stochastic AOT field, )(xτ )(ˆ kτ - its Fourier transform 
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Scale-Invariance
—a powerful
unifying concept

V(r) ∝ rζ

Scale-invariance (scaling):

• statist. invariance under change in scale r

• power-law in r over large range of scales

V(λr) ∝ λζV (r)

V is variability

Scale-Invariance
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Example for atmospheric wind

From Gage and Nastrom, 1989

ß=3

(2D turbulence)

ß=5/3 

(3D turbulence)

Wind fluctuations in the free 
troposphere at 9-14 km altitude

2D turbulence
β=3

3D turbulence
β=5/3
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Simulated examples of 
scale-invariant AOT

β  = 1.2 β  = 1.67 β  = 2.0

E(k) ~ k-ß

All three curves have the same mean and standard deviation

low β high ββ =5/3
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AOT from MFRSR network
Power spectrum
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AOT from MFRSR network
Power spectrum
averaged over time

averaged over space
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AOT from MFRSR network
Structure functions (2nd order)
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AOT from MFRSR network
Structure functions

averaged over time

averaged over space

Hsmall-scale=0.17 Hsmall-scale=0.24

Hsmall-scale=0.23 Hsmall-scale=0.11
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AOT from MFRSR network

Questions to ask:

• What the small-scale spectral exponents are driven 
by? Or what fluctuations of the AOT (in time and 
space) depend on?

• What physics is behind the scale break?
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Time dependence of scaling 
exponents

β 2H+1

large-scale 
exponents

small-scale 
exponents

small-scale 
exponents
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Temperature decrease

Ground temperature Potential temperature
profiles (sonde)
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β vs. aerosol scale height
Aerosol scale height 

(Raman lidar)
Mixed layer height 

(sonde)

small-scale 
exponents
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Correlation between daily values 
of β and aerosol scaling heights

after 3-day 
smoothing
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Variability in1993-2003 

Small-scale
• strong trend in 1993-1994
• seasonal cycle with max in Spring    
. or Winter

Large-scale
• smaller inter-annual trend

Mt. Pinatubo aerosol

Monthly mean scaling exponents 2H2+1 for SGP CF (870 nm)
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β v.s. topography

Temporal evolution of β
in “β > 1.6” and  
“β < 1.6” groups during 
September 2000.

Same as left with altitude 
isolines over-plotted.

Mean values of β for SGP 
network sites in September 
2000.

“valley”
high β

“hill”
low β
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β v.s. topography

Altitude: h Curvature: K = div
∇h
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ß color bar ß color bar
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Spatial structure functions 

The first order spatial structure function for Sep. 14, (left: 19 sites, 171 pairs) and for 
all days in Sep. 2000 (right: 21 sites, 210 pairs, range: 30 – 415 km, spacing: 2.3 km 
mean, 18 km max).
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MODIS SF: SGP
September 14, 2000, 508 pixels, 128,778 pairs
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MODIS SF: NE USA
September 14, 2000; 9,292 pixels, 43,165,986 pairs
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MODIS SF: Sahara dust plume
June 4, 2001; 12,295 pixels, 75.5 million pairs
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AOT Scaling Regimes
(preliminary results)

• microscale (0.5--15 km) where    fluctuations 
are governed by 3D turbulence;

• transition towards large-scale 2D turbulence 
(15--100 km);

• mesoscale variability (scales up to 100--600 
km and synoptic scales (after 600--1000 km) 
where AOT fields become stationary and loose 
correlation.
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Scales up to 6 hours (~ 100 km): 
positive correlation - AOT variation is 
dominated by hygroscopic growth.

Larger scales: 
correlation starts to change sign - AOT 
variation is influenced by fine mode 
aerosol concentrations.

AOT correlation with aerosol size 
(preliminary results)
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A multivariate structure function Suv and a 
scale-dependent correlation coef. Cuv of two 
fields u(x) and v(x) (x is time, or space):
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uv
uv =

Statistical distribution of the correlation 
coef. Cuv values obtained by analysis of 
294 clear sky daily MFRSR records from 
Sept. 2000.
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Conclusions
• Scale invariance is a fundamental property of        
atmospheric aerosol datasets.

• Variability in a large scale range is characterized by 
1 or 2 parameters complementary to Gaussian 
statistics. 

• AOT scaling reflects mixed layer meteorology and 
aerosol processes (transport, hygroscopic growth)


