toward resolution on the optics of light-absorbing carbon

Tami C. Bond

University of Illinois at Urbana-Champaign

Robert W. Bergstrom

Bay Area Environmental Research Institute

16 December 2004 American Geophysical Union San Francisco, California

don't just travel. travel neutral. WWW.CO2.Org

funding: U.S. EPA, NASA-ACMAP, NASA-IDS, NASA-EOS, NOAA-ACIP

material presented here

"Light absorption by carbonaceous particles: An investigative review"

- T. C. Bond and R. W. Bergstrom, perpetually in prep
- (~250 references)

Approach: Review (not just tabulate) all previous literature

- "Classifying climate-relevant properties of primary carbonaceous particles"
 - H. Sun and T. C. Bond, *in prep*; <u>poster</u> Friday morning
- "Can reducing soot emissions save us from global warming?"
 - T. C. Bond and H. Sun, *submitted*

scattering, backscattering... fractal geometry, particle restructuring... wavelengths other than 550 nm... organic carbon, water uptake...

background

large variability reported

- in refractive index, absorption cross-section, and direct climate forcing
- the buzz: "very uncertain"

+ goal of our work

- Iong-term: achieve *predictive capability* for the climatic impacts of carbonaceous aerosols
- this presentation: obtain most defensible estimates of optical properties for uncoated ("naked") soot

Secret fear:

What if this variability is unpredictable and we are stuck with a large uncertainty in radiative forcing?

These pertain to the material called "black carbon" in climate models

Default (OPAC) **refractive index** should be changed. It represents an aerosol that is not dark enough.

The central estimate of **absorption cross-section** for uncoated carbon is $7.5 m^2/g$.

Most variations in **modeled direct forcing** can be explained by differences in particle optics and lifetime.

refractive index: measurements

reviews:TW=Twitty & Weinman, 1971; MR=Medalia & Richards, 1981; H=Horvath, 1993; FMK=Fuller et al, 1999

refractive index: explanations

- lots of variation!
 some can be explained by material voids
- some meas. did not provide unique constraints
- some particles are partially graphitized

Default (OPAC) **refractive index** should be changed. It represents an aerosol that is not dark enough.

absorption cross-section: measured

/	Defense	Chi I Lu	¥7 - 1	W	Adjusted to
′	Kejerence	Cited by	vaiue	wavelength	550 nm ·
	MEASUREMENTS				
	Diesel engine soot				6.8
	Truex and Anderson, 1979	H, L	17	514	17
	Japar and Szkarlat, 1981		8.9	514.5	8.3
	Japar et al., 1984		8.5	514.5	8.0
	Roessler and Faxvog, 1980	L	8.3	514.5	7.8
	Schnaiter et al., 2003		6.6+/-0.4	550	6.6
	Scherrer et al., 1980		9.0	550	7.4
	Szkarlat and Japar, 1981	H, L	8.28	514	7.7
	Szkarlat and Japar, 1983	н	10.9	500	8.1
	Other combustion derosal				
	Bruce et al 1991		4 55	488	4.0
	Colbeck et al. 1987		7.5	632	8.7
	"		7.5+/-0.6	632	8.7
	Japar and Killinger, 1979		1.5	~~ -	1.5
	Lee. 1980		8.0	550	6.5
	Mullins and Williams, 1984		4.1+/-0.1	450	3.2
	Mulholland and Choi, 1998		5.9±0.1	633	6.8
			6.9±0.1	633	7.9
	Carbon black				
	Donoian and Medalia, 1967		9.68	550	7.5
	Other sources		20.05		20 / 05
	Schnaiter et al., 2003		2.9 +/- 0.5	550*	2.9 +/- 0.5
	Amhient - fine				
	Adams et al 1990		10	514	93
	Edwards et al. 1983	L	7-12	550	need to look
	Groblicki et al., 1981	Ĺ	11.8	550	need to room
	Gundel et al., 1984	L	25.4		
	Japar et al., 1981		8.0+/-0.4	550	
	Japar et al., 1984		9.1	500	8.3
	Japar et al., 1986		11.0, 12.1		check
	Japar et al., 1986	L	9.8-12		check
	Liousse et al., 1993		5	broadband	
	"	L	20		
	Wolff et al, 1980	L	12.7	550	10.6
	Ambient commo				
	Walff at al. 1080	т	20	550	
	wonitet al, 1980	L	5.8	550	
	CALCULATIONS				
	Chylek et al, 1981	Н	5	514	
	Clarke and Noone, 1985	Н	6.6-8		check
	Jennings and Pinnick, 1980	L	3.5-8.6		
	Nelson, 1989	L	8-10	550	
	Rosen and Hansen, 1984	L	8.3-18.1	500	
	CECONDARY REFERENCES				
	SECONDARY REFERENCES		0.50		
	Clarke, 1989	Н	9.68		
	Heintzenberg, 1982	L	9.68		
	Clarke et al, 1987	L	9.68		
	Japar et al, 1984	T	9.8		
	Patterson et al., 1986		6.75		
	Waggopar at al 1081	H	5 11		
	waggoner et al., 1981	L	5-11		

absorption cross-section

origin of 10 m²/g:

Donoian and Medalia, 1967

Table 2-Extinction and Scattering of Green Light (λ =546 mµ) by Carbon Black in Dilute Suspension

Carbon Black	Measured Diffuse Reflectance* of Opaque Coating (%)	Specific 90° Scattering at Infinite Dilution [R(90)/C] ← o (cm²/g)	Total Specific Extinction (E) (cm²/g)x10 ⁻³	Total Specific Absorption (A) (cm²/g)x10 ⁻³	Total Specific Scattering (5) (cm²/g)x10 ⁻³	Forward Scattering (F) (cm²/g)x10 ⁻³	Backward Scattering (cm²/g)x10 ⁻³	Ratio of Forward to Backward Scattering F/B
Black Pearls 607	0.10	180	74.5	67.9	6.6	5.5	11	F 00
Cupercarbours	0.12	140	71.5	66.6	4.9	41	0.8	5.00
Black Bearly 70	0.18	220	86.0	80.8	5.2	80	1.9	4.90
Black Fearls 70	0.16	210	89.0	84.4	4.6	3.3	1.5	2.84
Monarch /1	0.22	220	101.7	96.8	4.9	3.5	1.5	2.52
spheron 6	0.42	720	109.4	94.0	15.4	10.9	1.4	2.48
Black Pearls A	0.34 .	710	110.0	95.0	15.0	10.8	4.6	2.38
Regal 660 Vulcan 6	0.44 0.45	780 910	117.9 129.0	101.7 105.6	16.2 23.4	11.6	4.0 4.6 4.9	2.72
Rcgal 300		960	124.0	90.6	99.4	00.0	1.5	5.75
Vulcan 3	0.53	890	141.3	109.0	33.4	28.3	5.1	5.48
Vulcan 3H	0.53	750	130.5	103.8	26.7	26.8 22.6	4.6 4.1	5.90 5.52
Sterling NS	0.60	780	119.0	85.6	33.4	29.4	4.0	7.45
Sterling MT	1.02	. 750			38.8	35.0	3.8	9.24
	. 1.09	410			57.6	55.2	2.4	23.00
 White light reflectance 								

in water

The central estimate of **absorption cross-section** for uncoated carbon is 7.5 m²/g.

closure: refractive index & absorption

 refractive index for graphitized carbon: somewhere on "void line"

- consistent values:
 1.7+0.7i, 2+1i
- lower imaginary
 r.i. possible;
 depends on
 formation
- cross-section
 higher than
 predictions
- ...agglomeration?

assume: small particles (constant mass absorption efficiency), density=1.8 g/cm³

morphology: coating (overview)

identify "mixing regimes" appropriate for use in models

morphology: coating (example)

"simple forcing efficiency"

simplistically,
(Chylek&Wong 1995)S

$$\frac{\mathbf{S}_{0}}{4} \cdot \left(\boldsymbol{\tau}_{atm}\right)^{2} \cdot \left(1 - \mathbf{F}_{c}\right) \cdot \left[2 \cdot \left(1 - \mathbf{a}_{s}\right)^{2} \cdot \boldsymbol{\beta} \cdot \mathbf{MSC} - 4 \cdot \mathbf{a}_{s} \cdot \mathbf{MAC}\right]$$

comparison of modeled forcing

Most variations in **modeled direct forcing** can be explained by differences in morphology and aerosol lifetime.

These pertain to the material called "black carbon" in climate models

Default (OPAC) **refractive index** should be changed. It represents an aerosol that is not dark enough.

The central estimate of **absorption cross-section** for uncoated carbon is 7.5 m²/g.

Most variations in **modeled direct forcing** can be explained by differences in particle optics and lifetime..

We combine model outputs to produce a **GWP for BC**.