Dynamical and Thermodynamic Controls on Smoke-Cloud Interactions over the Amazon

Hongbin Yu, R. Fu, R.E. Dickinson Georgia Institute of Technology

Observational Evidence of Smoke-Cloud Interactions over Amazon

- Smoke particles act as CCN, resulting in highly concentrated but narrowly distributed cloud droplet spectra (larger reflectivity)
- Warm rain processes are suppressed, promoting vertical transport of water and pollutants ("smoking clouds") and modifying circulations
- Smoke absorption both cools the surface and heats the atmosphere, changing the thermodynamics and likely reducing cloud cover ("cloud burning")

 To demonstrate the complexity of smokecloud interactions using MODIS data

To explore

 whether or not these complex interactions vary with the interannual changes of large-scale background;

–what processes might control how changes of aerosol influence warm clouds.

MODIS Analysis

MODIS/Agua daily 1°x1° ECMWF, radiosondes. Dry-to-wet transition. (Aug-Oct), tropical Amazon 2003 (normal) vs 2002 (El Nino) Warm clouds only Southerly crossequatorial flow

2003: Normal Year

Twomey effect for AOD<0.6;

More significant at high LWP than at low LWP;

Droplet size levels off at a high AOD.

2003: normal year

For LWP>70g/m2, cloud fraction increases with AOD (<0.6)

Thin clouds:

0.0 0.2 0.4 0.6 0.8 1.0 fractions for AOD<0.6

decrease for higher AOD conditions. (indication of cloud-burning effect)

 Cloud fraction decreases with AOD, with greatest reduction for thicker and higher clouds. <u>(semi-direct effect)</u>

The tops of warm clouds are apparently lowered by smoke

- stabilization of ABL
- enhanced capping inversion by smoke absorption

2003 was wetter than 2002

Radiosonde measurements

2003 was more unstable than 2002

2003: more rapid decrease of droplet size at higher RH. 2002: more rapid reduction of cloud cover at lower RH.

In 2003, Twomey effect is larger at smaller LI (unstable); In 2002, the reduction of cloud fraction appears to be greater for larger LI (stable)

Dependence on Wind-Shear

LLWS: from radiosonde measurements

between 925-700 mb level

* Cloud burning is more significant under weaker windshear, presumably because

 turbulence/convection are largely determined by surface fluxes for smaller wind-shear; and these can be significantly reduced by smoke absorption.

What have we learned from this study?

- Smoke influences clouds significantly but differently between a normal 2003 (indirect effects) and an ENSO 2002 (semi-direct effect).
- Such differences correlate with differences in atmos. dynamics/thermodynamics:
 - 2003 was wetter and more unstable, favorable for activation of CN to CCN;
 - 2002 had a relatively dry ABL and less extensive clouds, presumably more susceptible to smoke absorption
- Atmospheric dynamics & thermodynamics play a complex role in regulating the influences of aerosols on clouds. Findings at a specific time & location are not easily extrapolated to other times & places.

THANKS!

* LLWS: from radiosonde measurements between 925-700 mb level

Cloud burning in 2002 is more significant under weaker wind-shear

 presumably, turbulence/convection are largely determined by surface fluxes for smaller wind-shear; and these can be significantly reduced by smoke absorption.

Different smoke-cloud interactions result in interannual variations of aerosol forcing

1:30 pm Instantaneous Forcing

• TOA cooling in 2003, but nearly zero in 2002

Surface flux reduces by 20~30% (moderate smoke) and 35~45% (heavy smoke) (2003 more than 2002)

• Atmos. heating increases by 50-60% (moderate) and 80-90% (heavy).

 Possible influences on wet season onset (influenced by surface fluxes, thermodynamics)

MODIS Lifted Index (LI) for AOD < 0.2

 \sim

Tropics: Smaller LI, less stable atmosphere in 2003; Stronger updrafts in 2003 could activate CN to CCN more efficiently.

2003

Different smoke-cloud interactions result in interannual variations of aerosol forcing

1:30 pm Instantaneous Forcing

24-h Average Forcing

- TOA cooling in 2003, but nearly zero in 2002
- Surface flux reduces by 20~30% (moderate smoke) and 35~45% (heavy smoke) (2003 more than 2002)
- Atmos. heating increases by 50-60% (moderate) and 80-90% (heavy).

 Possible influences on wet season onset (determined by surface fluxes, thermodynamics)