Aerosol-Cloud interactions in CACTUS: Current and Future directions

Athanasios Nenes

School of Earth and Atmospheric Sciences School of Chemical and Biomolecular Engineering Georgia Institute of Technology, Atlanta, GA

AEROCOM meeting, December 2004

Nenes and Seinfeld parameterizations

• Sectional or lognormal representation of aerosol chemistry and size distribution.

• Each section or lognormal mode has its own chemical composition

• Multiple populations can co-exist and compete for water vapor.

• Köhler theory for computing CCN properties.

·Lagrangian parcel framework used.

Derive expression for the condensational growth of CCN; include within the supersaturation balance for the parcel, and solve for the maximum.

Challenge: to derive an expression of the condensation rate at S_{max} . *Solution*: "Population splitting" (Nenes and Seinfeld, JGR, 2003)

Nenes and Seinfeld (2003) activation parameterization

Features: -10³-10⁴ times *faster* than full numerical model.

- uses *minimal* amount of empirical info.

- chemically complex and heterogeneous aerosol can be treated, including the effects of organic species.

Parameterization: current accomplishments

Expanded the parameterization capability

 Derived formulations for *sectional* (Nenes and Seinfeld, 2003) and *lognormal* (Fountoukis and Nenes, *in review*) aerosol.

• Included size-dependant mass transfer of water vapor to droplets which eliminated underestimation tendency in parameterized droplet number (Fountoukis and Nenes, *in review*).

• Explicitly can treat chemical effects that alter surface tension and accommodation coefficient (Fountoukis and Nenes, *in review*).

• Included the effect of condensable gases (Nenes, in preparation).

Evaluations & implementations

• Computational efficiency *substantially* improved.

• Parameterizations have been evaluated with *in-situ* data for both cumulus and stratocumulus cloud regimes

• Implemented in NASA GISS. Currently being implemented in NASA GMI, Goddard GCM

Parameterization evaluation: Field data comparison

Measure *in-situ* aerosol size/composition, updraft velocity and droplet concentration (CIRPAS Twin Otter). Will the parameterization calculate the right number?

Evaluation: cumulus cloud regime (CRYSTAL FACE)

Parameterization agrees with observed CDNC within experimental uncertainty

Evaluation: stratocumulus cloud regime (CSTRIPE)

Parameterization agrees with observed CDNC within experimental uncertainty GCM implementation: NASA GISS a) Indirect forcing assessments New parameterization with full aerosol microphysical simulation (TOMAS model, Adams and Seinfeld, 2002).

Present day – preindustrial TOA sulfate forcing: -1.4 W m⁻²

Empirical aerosol-CNDC relationships They can be used together with parameterization to obtain "effective" updraft for calculating activation.

> Prescribed or Simulated Size Distribution from GCM

From Lance et al., JGR (in press)

Empirical aerosol-CNDC relationships: issues The "effective" updrafts implied can be very high

Empirical correlations may imply unrealistic cloud dynamics. The problem is most prominent at marine/clean environments Empirical aerosol-CNDC relationships: issues The "effective" updrafts implied can be very high... ...but not always

The high updrafts appear when [SO4] < 2 ug m⁻³
Pristine (clean) environments always have high W
This is an inherent feature of the correlations

ACKNOWLEDGMENTS

People John Seinfeld, *Caltech* William Conant, *Caltech* Christos Fountoukis, *GA Tech* Sara Lance, *GA Tech* Nicholas Mezkhidze, *GA Tech*

Funding NASA ONR NSF GA Tech Startup

For more information and PDF reprints, http://nenes.eas.gatech.edu

photo: G.Roberts