

Comparing CMIP5 and AeroCom Hindcast simulations by HadGEM2.

Nicolas Bellouin

10th AeroCom workshop, Fukuoka, Japan, 5 October 2011

Simulations 1980—2006

	CMIP5 Historical	AeroCom Hindcast
HadGEM2-ES setup	Atmosphere-ocean coupled	Atmosphere only
Meteorology	Free running	Nudged to ERA40
Aerosol emissions	CMIP5	AeroCom 2 (v1)
Sea surface temperatures	From ocean model	AMIP2 climatology
Ocean-based DMS emissions	From ocean model	Climatology from CMIP5 simulation
Volcanic forcing	Prescribed stratospheric AODs	Volcanic SO2 emissions
Vegetation	Interactive	Interactive (reinit 1980)
Trop Chemistry Emis.	CMIP5	CMIP5

Aerosol emissions

Total aerosol optical depth at 0.55 µm

CMIP5 Historical - 1980

CMIP5 Historical - 2000

AeroCom Hindcast - 1980

- Mineral dust larger in CMIP5 over Sahara, Arabian Sea, India, and Australia
- Non-dust AOD is ~0.1 for both simulations.

AeroCom Hindcast - 2000

Difference CMIP5 Historical and MACC Reanalysis 2003-2006

Total aerosol optical depth at 0.55 µm: MACC Re-analysis

MACC Reanalysis - 2003-2006

- MACC Re-analysis: ECMWF aerosol product with assimilation of MODIS aerosol optical depth.
- Differences dominated by differences in mineral dust. Generally, lower background in HadGEM.

Difference AeroCom Hindcast and MACC Reanalysis 2003-2006

Met Office Hadley Centre

Regional time series of total aerosol optical depth

- AOD underestimated, except for CMIP5 dust events in Africa, India, and transport to South Am.
- Seasonality in North America, Europe, India and China skewed towards the summer.
- AeroCom Hindcast better represents year-to-year variability in South American biomass-burning.

Temporal correlations with AERONET

 113 AERONET sites with at least 60 valid monthly means of AOD at 0.44 µm (version 2, level 2) in the hindcast period

- Correlations from -0.4 to +0.8
- Best performance in North America, poor performance in Southern Hemisphere

Correlation in $\tau_{0.44}$: CMIP5 Historical

 Correlation in τ_{0.44}: AeroCom Hindcast

 Best

 Worst

 Mean: 0.403

Root mean square errors against AERONET

- RMSE from 0.02 to 0.97.

- Again, performance is better in the Northern Hemisphere.

RMSE in $\tau_{0.44}$: CMIP5 Historical

RMSE in $\tau_{0.44}$: AeroCom Hindcast

- Regional patterns in differences between the two simulations.
- Northern Europe: different emissions benefit AeroCom?
- Equatorial Africa: underestimate of mineral dust in AeroCom is detrimental.
- Australia: overestimate of mineral dust in CMIP is detrimental.
- South America: Hindcast is poorer – surprising.

$\Delta Correlation(\tau_{0.44})$: AeroCom - CMIP5

Mean: -0.003

[©] Crown copyright Met Office

Effect of adding nitrate to AeroCom Hindcast

- Adding nitrate optical depth improves RMSE slightly where optical depths are underestimated (Europe).
- Nitrate does not do much to improve seasonality.

 $\Delta Correlation(\tau_{0.44})$: AeroCom(Nitrate) - AeroCom

Aerosol forcing and radiative flux perturbation

CMIP5: Forcing due to changing emissions from 1980 to 2000.

- AeroCom: Difference for year 2000 between Hindcasts with 1980 emissions and with actual time series.
- Similar, differences due to episodic emissions (volcanic, biomass-burning).

Δτ_{0.55} - 2000-1980 CMIP5 Historical

Mean: +0.003 -01 -0.06 -0.02 0.02 0.06 0.1 $\Delta \tau_{0.55}$ - 2000-1980 AeroCom Hindcast

Mean: +0.001 -0.1 -0.06 -0.02 0.02 0.06 0.1

Forcing at TOA 2000-1980 CMIP5 Historical

All-sky, SW+LW, direct and 1st indirect Mean: -0.06 Wm⁻²

-5 -4 -3 -2 -1 0 1 2 3 4 5

Perturbation at TOA 2000-1980 AeroCom Hindcast

All-sky, SW+LW, all radiative effects Mean: -0.09 Wm⁻²

-5 -4 -3 -2 -1 0 1 2 3

- AeroCom Hindcast is not "better" than CMIP5 Historical.
- It is really easy to introduce diversity in aerosol simulations!
- Attribution of changes in performance to emissions or transport would require additional simulations, where components are changed one at a time. Is it even useful?
- Nitrate aerosols do not affect the comparison significantly.
- Climate forcing is similar in both simulations, suggesting radiative impacts are consistent on continental scales.
- Did other models contribute to both CMIP5 and AeroCom?

Notes on indirect effect discussion

- Natural aerosols are important.
 - Clouds formed from large natural aerosol number are less sensitive to anthropogenic additions;
 - Pre-industrial state scales the indirect forcing.
- Scales: Was it a good idea to introduce parameterizations of cloud microphysical processes in models that do not resolve clouds?
- Why are modelled and satellite-derived cloud susceptibilities so different, in spite of model parameterizations being based on observations?

Questions and answers

Aerosol emissions

