Main Points

Why this panel?

• Satellite data are often *misinterpreted* or *over-interpreted* (my view) -- MODIS 'anthropogenic' aerosol; MISR 'SSA'; AERONET SSA

Some Measurement-related Strengths

- Satellites can measure aerosol amount and 'type' (away from cloud & sometimes above cloud)
- Satellites can measure aerosol layer & near-source plume elevation
- Satellites can measure cloud fraction, cloud phase, α_c , τ_c , p_c , N_c , r_c , LWP, $q_v(z)$, T(z), cloud height
- Aerosols tend to concentrate in layers, even when transported long distances
- Special cases: Ship tracks, Aircraft Contrails, Stratus over smokestacks (perturbation + control)

Some Measurement-related Issues – Please Read and Take Seriously the Quality Statements

- Difficult to retrieve aerosols when they are collocated (especially in 3-D) with cloud
 - -- Cloud-scattered light & cloud "contamination" can affect near-cloud aerosol retrievals
- Not always easy to distinguish cloud from aerosol particles (particle hydration; cloud-processing)
- Remote-sensing cannot retrieve particles smaller than about 0.1 μ m diameter (most CCN)
- Factors can co-vary
 - -- LWP can decrease as aerosol number concentration increases (also depends on atm. stability)
- Remote sensing usually sees only some weighted vertical average of cloud particle properties
- Time & spatial scales of many aerosol-cloud interactions do not match satellite sampling

What Next?

- *Kaufman* {AOD; FMF}; Matsui {τ_c, r_c, LWP; stab.}; Oreopoulos-Platnick {α_c, r_c}; Nakajima {τ_c, r_c};
 -- McComiskey & Feingold {PDFs of N_a, w;LWP} in cloud parcel model
- Need quantitative tests of mechanisms
- Identify where, when, and what combinations of *new* measurements are most needed

Backup Slides

SOME NOTES ON SATELLITE OBSERVATIONS OF AEROSOLS-CLOUDS INTERACTIONS

Ralph Kahn NASA/Goddard Space Flight Center With contributions from Michael King / U. Colorado

SATELLITES DEMONSTRATE EFFECT OF AEROSOLS ON CLOUDS – IN SPECIAL CASES (1)

<u>Ship Tracks</u> – Test of Cloud Albedo Effect

Coakley et al., Science 1987

- Statically stable AVHRR scenes
- Fairly **uniform** low-level marine stratus ~ few 100 km
- No ship-track signal at 11 microns
- Weak effect at 0.67 microns $-1.6\% \pm 0.7\%$ Scattering important but not absorption, and *LWP* & r_c vary
- Significant effect at 3.7 microns 3.9% ± 0.4%
 Smaller, more numerous particles → Scattering/Absorption ratio increases
- The right combination of meteorological conditions and measurements is needed to observe the effect
- Quantitatively, expect △Refl(3.7) / △Refl(0.67) ~ 0.6 to 2.6
 Observed 0.4 → Increased absorption and/or decreased LWP occur (opposite LWP effect)

AVHRR, US W. Coast (from Toon, *Science* 2000)

SATELLITES DEMONSTRATE EFFECT OF AEROSOLS ON CLOUDS – IN SPECIAL CASES (1)

Observed $\Delta \tau_c \rightarrow 15-20\%$ reduction in LWP, even accounting for aerosol SSA

SATELLITES DEMONSTRATE EFFECT OF AEROSOLS ON CLOUDS – CORRELATION STUDIES (1)

Over Global Ocean – Test of Cloud Radius Effect

Nakajima et al., GRL 2001

- AVHRR scenes for Jan, Apr, Jul, & Oct 1990
- Assume **bi-modal aerosol** dist. of **fixed** r_a and σ
- 0.67 and 3.4 micron channels for τ_a and coarse/fine
- Use AI (= Ang. x τ_a) + fixed sizes to estimate N_a
- 0.67, 3.4, and 11 micron channels for τ_c and r_c
- Negative correlation between fine-mode N_a and r_c in low-cloud areas (yellow color)
- **Positive** correlation between N_a and τ_c
- Cloud Liquid Water Path $(2r_c \tau_c/3)$ ~ Independent of N_a

Log N_a vs. Log N_c Yellow= N_a , N_c large Red= N_a large, N_c small Green= N_a small, N_c large

• N_c not correlated with N_a in tropics (red color) – aerosol-cloud interactions vary with aerosol type, cloud type, vertical distribution

Satellites Demonstrate Effect of Aerosols on Clouds -

Correlation Studies (2)

POLDER – Cloud Radius Effect

Bréon et al., Science 2002

- March-May 1997; 60°N to 45°S
- Aerosol Index ($AI = \tau_a \times Ang$) ~ aerosol column <u>number</u>
- r_c over land & water from polarized signal angular shape
- Uniform cloud and narrow size dist. required
- Seasonal Mean AI and r_c from near-coincident obs.
- 1-day Back-trajectory to get AI in cloudy regions
- r_c inversely correlated with AI
- Infer: More aerosols \rightarrow smaller cloud drops
- Steeper slope over water than land
- Infer: Greater susceptibility over water
- Water & land *r_c* same for large *AI*
- Uncertain sampling biases \rightarrow difficult to quantify

[Quaas et al., JGR 2004]

- *Half* the r_c vs *AI* slope over land; sampling differences?
- *LWP* (~ $r_c \ge \tau_c$) increased with *AI* (i.e., with *decreased* r_c) for *AI*>0.1 (N. mid-lat.) \rightarrow cloud lifetime *LWC* effect?

Red=Land; Blue=Ocean; Green=Ocean AOT; (error bars indicate variability)

CORRELATION STUDIES (3): AEROSOL CONVECTIVE CLOUD "INVIGORATION" HYPOTHESIS

Kaufman, Koren, Rosenfeld, Remer, Rudich, articles published and submitted

- $1/r_c \sim N_c \sim N_a \sim \tau_a$ [Cloud Radius Effect]
- *r_c* decrease → early precipitation inhibited → stronger updrafts →
 higher cloud tops, higher cloud fraction,
 glaciation and heat release at higher elevations
- MODIS data $\{\tau_a, C_f, \tau_c, r_c, T_c, p_c\}$
- Aggregated to 1° x 1° from higher-resolution daily measurements, so *aerosol and cloud information are treated as "simultaneous"*
- NCEP wind and *RH* profiles to test correlations w/meteorological factors
- C_f, T_c, τ_c (water clouds) all increase w/ τ_a
- τ_c (ice clouds) decreases or is unchanged Infer anvils grow, which increases C_f at the expense of τ_c

Correlation Between AOD from Space and CCN in Remote & Polluted Regions

Andreae ACP 2009

ISSUES (5): USING AI (= $\tau_a \times Ang$) to Estimate CCN

Kapustin, Clarke, et al., JGR 2006

- <u>Test Idea</u>: Smaller particles more likely to become *CCN*; *Ang* is a smaller quantity for larger particles
- ACE-Asia, Trace-P in situ field data CCN proxy
- AI does not work quantitatively in general, but can <u>if the data are stratified</u> by:
- -- *RH* in the aerosol layer(s) observed by satellites
- -- Aerosol Type (hygroscopicity; pollution, BB, dust)
- -- Aerosol Size (Ang is not unique for bi-modal dist.)

Practically, in addition to τ_a and Ang, this requires:

- -- Vertical humidity structure
- -- Height-resolved aerosol type
- -- Height-resolved size dist. [extrapolated to small sizes(?)]

This study includes enough detail to assess $AI \sim N_a$ and $AI \sim CCN$

(a) all ACE (blue) & Trace-P, <u>dry</u>
(b) ACE - OPC-only, amb. *RH*(c) TP - OPC-only, amb. *RH*

Cloud Optical & Microphysical Properties

(M. D. King and S. Platnick)

- Pixel-level cloud product during daytime at 1 km
 - Daytime defined as $\theta_0 < 81.4^\circ$ to be consistent with cloud mask
- Critical input (especially for global processing):
 - Cloud mask: to retrieve or not to retrieve?
 - Cloud thermodynamic phase: liquid water or ice libraries?
 - Cloud top temperature, ancillary surface temperature: needed for 3.74 µm emission characterization (band contains solar and emissive signal), *T*(sfc) from NCEP, Reynolds SST
 - Atmospheric correction: requires cloud top pressure, ancillary information regarding atmospheric moisture & temperature (e.g., NCEP, other MODIS products)
 - Surface albedo: for land, ancillary information regarding snow/ice extent (e.g., NISE)

Retrieval of τ_{c} and r_{e} (T. Nakajima and M. D. King)

Cloud Optical Properties

- The reflection function of a nonabsorbing band (e.g., 0.75 µm) is primarily a function of optical thickness
- The reflection function of a near-infrared absorbing band (e.g., 2.16 µm) is primarily a function of effective radius
 - clouds with small drops (or ice crystals) reflect more than those with large particles
- > For optically thick clouds, there is a near orthogonality in the retrieval of τ_c and r_e using a visible and near-infrared band

Nakajima and King King et al. (1992)

Cloud Optical & Microphysical Retrievals Retrieval space examples

Cloud Optical & Microphysical Retrievals Retrieval space examples

Liquid water ocean surface Liquid water ice surface

Terra/MODIS Cloud Thermodynamic Phase (M. D. King, S. Platnick, J. Riedi et al. – NASA GSFC, U. Lille)

Clear

True Color Composite (0.65, 0.56,

March 22, 2001

Thermodynamic

Liquid water

lc

Uncertain

Collection 5

Cloud Optical Thickness and Effective Radius (M. D. King, S. Platnick – NASA GSFC)

Cloud Optical

Cloud Effective Radius

Monthly Mean Cloud Fraction by Phase (M. D. King, S. Platnick et al. – NASA GSFC)

July 2006 (Collection 5) Terra

- Liquid water clouds
 - Marine stratocumulus regions
 - ✓ Angola/Namibia
 - ✓ Peru/Ecuador
 - ✓ California/Mexico
- > Ice clouds
 - Tropics
 - Indonesia & western tropical
 Pacific
 - ✓ ITCZ
 - Roaring 40s

Cloud Fraction (Liquid Water)

Monthly Mean Cloud Optical Thickness (M. D. King, S. Platnick et al. – NASA GSFC)

July 2006 (Collection 5) Terra (QA Mean)

- Liquid water clouds
 - Marine stratocumulus $\tau_c \sim 15$
 - Higher optical thickness over land than ocean
 - Cloud optical thickness near
 5 in Indian Ocean
 - High optical thickness around roaring 40s
- > Ice clouds
 - Larger in tropics (ITCZ)
 - High where deep convection occurs
 - ✓ Congo basin
 - ✓ Amazon basin
 - High optical thickness around roaring 40s
 - Higher over land than ocean

Cloud Optical Thickness (Ice)

Monthly Mean Cloud Effective Radius (M. D. King, S. Platnick et al. – NASA GSFC)

July 2006 Terra (QA Mean)

- Liquid water clouds
 - Larger drops in SH than NH
 - Larger drops over ocean than
 - Due to cloud condensation nuclei (aerosols)
- > Ice clouds
 - Larger in tropics than high latitudes
 - ✓ Anvils
 - Small ice crystals at top of deep convection

Cloud Effective Radius (Ice)

$\begin{array}{l} \text{MODIS } \tau_c \text{ vs } r_e \text{ Joint Histograms} \\ \text{Liquid Water Clouds over Ocean} \end{array}$

32°-40°N, 117°-125°W July 2006

MODIS and ISCCP-like τ_c vs p_c Joint Histograms

GEWEX Project

AIRS - Temperature & Water Vapor Profiles

Temperature Profiles Accurate to 1K/km to 30 mb

Water Vapor Profiles Match Observations 15%/2km

ISSUES (1) – CLOUD ALBEDO EFFECT W/ VARYING LWP

Synoptic-Scale Clouds – Combined Satellite & Model Analysis

Schwartz et al., PNAS 2002

- Two week-long events in April 1987
- Low-level (T_c) -cloud-filled (σ_{min}) pixels used
- AVHRR 0.67 & 3.7 micron bands for τ_c and r_c
- *LWP* = $2/3 \rho_w \tau_c < r_c >$; with $< r_c > = 0.82 r_c$
- α_c (cloud top spherical albedo) ~ (τ_c ; g) g=assym. factor
- Aerosol Transport Model predicts sulfate aerosol loading
- r_c decreased by ~ half at the peak of each event
- τ_c and α_c show **no systematic change**
- *LWP* decrease with r_c (though *LWP* ~ cloud dynamics)

• α_c increased by 0.02 to 0.15 with decreased r_c , for data stratified by *LWP* [i.e., comparing only perturbed & unperturbed having same *LWP*]. Sensitivity greatest for intermediate *LWP* (~ 100 gm/m²)

ISSUES (2): VERTICAL STRUCTURE r_c – CLOUD 'TOP' VS. CLOUD COLUMN, & LTS

Matsui et al., GRL 2004

- TRMM data, March-May, 2000; 37°N to 37°S
- Vis-IR Radiance Imager (VIRS) for $r_c(top), \tau_c$
- Microwave Imager (TMI) for $r_c(col)$, LWP (19, 37GHz)
- Warm clouds only $(T_c > 273 \text{ K})$
- VIRS to find cloud-filled TMI pixels
- AI from MODIS
- Lower Trop. Stability (LTS) from NCEP
- *IE* appears larger for $r_c(col)$ than $r_c(top)$
- **Higher** *LTS* and/or *AI* ~ reduced *r_c* and suppressed rain conditions
- Aerosol effect ~ 50% larger than *LTS* effect
- TMI *LWP* decreases with reduced $r_c \rightarrow$ net change in cloud albedo SMALL

[d*α_c*/d*LTS* ~9%; *LTS* effect dominates]

<u>r_(top)</u> vs. <u>r_(col)</u> (microns)			
I.	<15	<15	[non-ppt.]
II.	>15	<15	[transition]
III.	>15	>15	[ppt.]

ISSUES (3): PARTLY-FILLED PIX, SCATT. LIGHT BIASES

Coakely et al., J. Atmosph. Sci. 2005, JAOTech 2005; Loeb&Manalo-Smith, J Clim 2005

- VIRS 0.64, 1.6, 3.7, 11 μm
- Low-level, single-layer clouds
- Identify **cloud-free** pixels: *land/water* (0.64/1.6 'NDVI') + (for 3x3) σ (0.64 & 11) + *threshold* (0.64 & 11)
- Find remaining pixels that are **overcast**: σ (0.64 & 11) + *threshold* (0.64 & 11)
- Remaining are **partly cloudy** except if T_{11} > cloud-free pixels; or T_{11} < overcast pixels

- Broken cloud found in 40% of 2 km pixels
- A simple threshold approach **overestimates** r_c , C_f , and **underestimates** τ_c , z_c , N_c compared to *Partly Cloudy Pixel* [MODIS cloud algorithm flags large r_c , small τ_c pixels as uncertain]
- C_f , τ_c , r_c , N_c decrease with increasing fraction cloud-free
- Results depend on cloud type, weakly on spatial resolution

ISSUES (4): LARGER-SCALE <u>SAMPLING</u> BIASES

Example: Rosenfeld and Feingold, GRL 2003

First Indirect Effect: $IE \sim -d \ln r_c / d \ln \tau_a$

 $\underline{AVHRR} - [IE \sim 0.17] \text{ over ocean}$

- partly filled pixels, surface contributions $\rightarrow r_c$ errors
- biased against thin & broken cloud, especially over land

<u>POLDER</u> – [$IE \sim 0.085$] over ocean; [$IE \sim 0.04$] over land

- "glory" to get $r_c \rightarrow$ favors monodisperse, uniform clouds
- biased against: thicker clouds, variable top height & r_c

Thinner clouds \rightarrow smaller upd rafts, less activation, smaller *IE* So POLDER may produc e artificially low regional *IE* estimates

Brief Highlights of Some More Satellite-Related Recent Work

Indirect Effects Observed

Lebsock et al JGR 08 – [high aerosols ~ reduced LWP] for non-ppt. warm oceanic clouds, especially less stable cases; not for almost-ppt. clouds

L'Ecuyer et al. JGR 09 – More CSU multi-satellite confirmation of 1st and 2nd indirect effects for warm maritime clouds

Jiang et al. GRL 08 – S Am. dry season polluted ice clouds have smaller r_c and precipitate less (TRMM; MODIS; MLS CO and LWP data used)

Gasso, JGR 08 – Weak volcanic activity increases BL cloud brightness and decreases r_c and LWP.

Bell, Rosenfeld, et al. JGR & GRL 08 – Higher TRMM & maybe surf. rainfall mid-week in SE US; lower in adjacent Atlantic → arsl. effect(?)

Satellite Retrieval Issues

Wen, Marshak, et al. JGR 08 – Aerosol retrieval 3-D Radiative effects, bluing due to cloud → Rayleigh scattering (theory + field observations)

Zhao, Di Girolamo, et al. GRL 09 – RICO: sub-pixel (<1.1 km) tropical cumulus biases MISR AOD less than 10⁻² in regional average

Tackett & Di Girolamo GRL 10 - nighttime CALIPSO show enhanced aerosol size and number concentration near cloud

Su et al. JGR 08 – Near-cloud RH &/or cloud processing: AOD 8%–17% higher within 100 m of E US clouds based on HSRL

Twohy, Coakley, Tahnk JGR 09 – INDOEX: 5% RH increase approaching clouds → *observed* ~50% aerosol scattering increase

Horvath & Davies GRL 04, Di Girolamo et al. GRL 10 – Maritime Cloud retrieval 3-D Radiative effects on r_c and τ_c

CCN Characterization from Space

Dusek et al. Sci 06 – Size matters more than chemistry for CCN (84-96% of total for the 06 study),

Hudson GRL 07 & Dusek et al. GRL 10 - Chemistry is more difficult to measure, but it matters too

Clarke & Kapustin Sci 10 – Aircraft CO, volatile and non-volatile AOD, which can be measured from space, as region-specific CCN concentration proxies

SATELLITE CONTRIBUTION: WHERE WE'VE BEEN

→ Need to measure <u>both</u> Causes (Aerosols) and Effects (Clouds)

[My Opinion]

- First Indirect Effect
- Cloud Radius
- Albedo

Special Cases Global Scale*

quantitativelyqualitativelyquantitatively?qualitatively?

- Second Indirect Effect
- Cloud Lifetimequalitativelyqualitatively?- LWPquantitativelyqualitatively?
- → Sign apparently depends on conditions not yet well-understood
- Semi-direct Effect
- Cloud Darkening– Thinning

qualitatively??qualitatively??

*Primarily or exclusively for single-layer, stratiform water clouds