Main Points

Why this panel? Why this panel?

• Satellite data are often *misinterpreted* or *over-interpreted* (my view) -- MODIS 'anthropogenic' aerosol; MISR 'SSA'; AERONET SSA

Some Measurement Some Measurement-related Strengths related Strengths

- Satellites can measure aerosol amount and 'type' (away from cloud & sometimes above cloud)
- Satellites can measure aerosol layer & near-source plume elevation
- Satellites can measure cloud fraction, cloud phase, α_c , τ_c , p_c , N_c , r_c , LWP, $q_v(z)$, $T(z)$, cloud height
- Aerosols tend to concentrate in layers, even when transported long distances
- Special cases: Ship tracks, Aircraft Contrails, Stratus over smokestacks (perturbation + control)

Some Measurement Some Measurement-related Issues related Issues –Please Read and Take Seri Please Read and Take Seriously the Quality Statements ously the Quality Statements

- Difficult to retrieve aerosols when they are collocated (especially in 3-D) with cloud
	- -- Cloud-scattered light & cloud "contamination" can affect near-cloud aerosol retrievals
- Not always easy to distinguish cloud from aerosol particles (particle hydration; cloud-processing)
- Remote-sensing cannot retrieve particles smaller than about 0.1 μm diameter (most CCN)
- Factors can co-vary
	- -- LWP can decrease as aerosol number concentration increases (also depends on atm. stability)
- Remote sensing usually sees only some weighted vertical average of cloud particle properties
- Time & spatial scales of many aerosol-cloud interactions do not match satellite sampling

What Next? What Next?

- *Kaufman* {*AOD; FMF*}*; Matsui* { τ_c , r_c , LWP; stab.}; *Oreopoulos-Platnick* { α_c , r_c }*; Nakajima* { τ_c , r_c }; -- *McComiskey & Feingold* {PDFs of *N_a*, *w*;*LWP*} in cloud parcel model
- Need quantitative tests of mechanisms
- Identify where, when, and what combinations of *new* measurements are most needed

Backup Slides

SOME NOTES ON SATELLITE OBSERVATIONS SOME NOTES ON SATELLITE OBSERVATIONS OF AEROSOLS OF AEROSOLS -CLOUDS INTERACTIONS CLOUDS INTERACTIONS

Ralph Kahn Ralph Kahn NASA/Goddard Space Flight Center NASA/Goddard Space Flight Center With contributions from Michael King / U. Colorado

SATELLITES DEMONSTRATE EFFECT OF AEROSOLS ON CLOUDS – IN SPECIAL CASES (1)

Ship Tracks – Test of Cloud Albedo Effect

Coakley et al., *Science* 1987

- **Statically stable** AVHRR scenes
- Fairly **uniform** low-level marine stratus ~ few 100 km
- **No** ship-track signal at **11** microns
- **Weak** effect at 0.67 microns $-1.6\% + 0.7\%$ Scattering important but not absorption, and *LWP* & *r_c* **vary**
- **Significant** effect at **3.7 microns** 3.9% ± 0.4% Smaller, more numerous particles \rightarrow **Scattering/Absorption <u>ratio</u>** increases
- The right **combination of meteorological conditions** and **measurements** is needed to observe the effect
- Quantitatively, expect $\Delta \text{Refl}(3.7) / \Delta \text{Refl}(0.67) \sim 0.6$ to 2.6 **Observed 0.4 → Increased absorption** and/or decreased *LWP* occur (*opposite LWP* effect)

AVHRR, US W. Coast (from Toon, *Science* 2000)

SATELLITES DEMONSTRATE EFFECT OF AEROSOLS ON CLOUDS – IN SPECIAL CASES (1)

Observed $\Delta \tau_c$ --> 15-20% reduction in LWP, even accounting for aerosol *SSA*

SATELLITES DEMONSTRATE EFFECT OF AEROSOLS ON CLOUDS –CORRELATION STUDIES (1)

Over Global Ocean – Test of Cloud Radius Effect

Nakajima et al., *GRL* 2001

- **AVHRR scenes** for Jan, Apr, Jul, & Oct 1990
- Assume **bi-modal aerosol** dist. of **fixed** *ra* and ^σ
- 0.67 and 3.4 micron channels for ^τ*a* and **coarse/fine**
- Use AI (= Ang. x τ_a) + fixed sizes to estimate N_a
- 0.67, 3.4, and 11 micron channels for τ_c and r_c
- **Negative** correlation between **fine-mode** N_a and r_c in **low-cloud** areas (yellow color)
- **Positive** correlation between N_a and τ_c
- Cloud Liquid Water Path $(2r_c\tau_c/3)$ ~ Independent of N_a

 $\text{Log } N_a$ **vs.** $\text{Log } N_c$ $V = N_a$, *N_c* large $\text{Red}=N_a$ large, *N_c* small **Green**= N_a small, N_c large

• N_c not correlated with N_a in tropics (red color) – aerosol-cloud interactions vary with aerosol type, cloud type, vertical distribution

[*Sekiguchi et al, JGR* 2003] extend this approach to $N_a \sim \{N_c, r_c, \tau_c, T_c, \text{cld.}$ fraction}; global & regional correlations aggregated from near-coincident observations

Satellites Demonstrate Effect of Aerosols on Clouds –

Correlation Studies (2)

POLDER – Cloud Radius Effect

Bréon et al., Science 2002

- March-May 1997; 60° N to 45° S
- Aerosol Index ($AI = \tau_a x \, Ang$) ~ aerosol column number
- \cdot r, over land & water from polarized signal angular shape
- Uniform cloud and narrow size dist. required
- Seasonal Mean AI and r_c from near-coincident obs.
- 1-day Back-trajectory to get AI in cloudy regions
- r_c inversely correlated with AI
- Infer: More aerosols \rightarrow smaller cloud drops
- Steeper slope over water than land
- Infer: Greater susceptibility over water
- Water & land r_c same for large AI
- Uncertain sampling biases \rightarrow difficult to quantify

[*Quaas et al., JGR* 2004]

- *Half* the r_c vs AI slope over land; sampling differences?
- LWP ($\sim r_c \times \tau_c$) increased with AI (i.e., with *decreased* r_c) for $AI > 0.1$ (N. mid-lat.) \rightarrow cloud lifetime *LWC* effect?

Red=Land; Blue=Ocean; Green=Ocean AOT; (error bars indicate variability)

CORRELATION STUDIES (3): AEROSOL CONVECTIVE CLOUD "INVIGORATION" HYPOTHESIS

Kaufman, Koren, Rosenfeld, Remer, Rudich, articles published and submitted

- $1/r_c \sim N_c \sim N_a \sim \tau_a$ [Cloud Radius Effect]
- r_c decrease \rightarrow early precipitation inhibited \rightarrow stronger updrafts \rightarrow higher cloud tops, higher cloud fraction, glaciation and heat release at higher elevations
- MODIS data $\{\tau_a, C_f, \tau_c, r_c, T_c, p_c\}$
- Aggregated to 1° x 1° from higher-resolution daily measurements, so *aerosol and cloud information are treated as "simultaneous"*
- NCEP wind and RH profiles to test correlations w/meteorological factors
- C_f , T_c , τ_c (water clouds) all increase w/ τ_a
- $\cdot \tau$ (ice clouds) decreases or is unchanged Infer anvils grow, which increases C_f at the expense of τ_c

Correlation **Between AOD from Space and CCN in Remote & Polluted Regions**

Andreae ACP 2009

ISSUES (5): USING $AI (= \tau_a X Ang)$ to Estimate CCN

Kapustin, Clarke, et al., JGR 2006

- Test Idea: Smaller particles more likely to become CCN; Ang is a smaller quantity for larger particles
- ACE-Asia, Trace-P in situ field data $-$ CCN proxy
- AI does not work quantitatively in general, but can *if the data are stratified* by:
- $-RH$ in the aerosol layer(s) observed by satellites
- -- **Aerosol Type** (hygroscopicity; pollution, BB, dust)
- -- **Aerosol Size** (*Ang* is not unique for bi-modal dist.)

Practically, in addition to τ_a and Ang, this requires:

- -- Vertical **humidity structure**
- -- Height-resolved aerosol type
- -- Height-resolved size dist. [extrapolated to small sizes(?)]

This study includes enough detail to assess $AI \sim N_a$ and $AI \sim CCN$

Cloud Optical & Microphysical Properties

(M. D. King and S. Platnick)

- Pixel-level cloud product during daytime at 1 km
	- Daytime defined as $\theta_0 < 81.4^\circ$ to be consistent with cloud mask
- Critical input (especially for global processing):
	- Cloud mask: to retrieve or not to retrieve?
	- Cloud thermodynamic phase: liquid water or ice libraries?
	- \sim Cloud top temperature, ancillary surface temperature: needed for 3.74 µm emission characterization (band contains solar and emissive signal), *T*(sfc) from NCEP, Reynolds SST
	- Atmospheric correction: requires cloud top pressure, ancillary information regarding atmospheric moisture & temperature (e.g., NCEP, other MODIS products)
	- Surface albedo: for land, ancillary information regarding snow/ice extent (e.g., NISE)

Retrieval of $\tau_{\rm c}$ and $\mathsf{r_{e}}$ (T. Nakajima and M. D. King)

Cloud Optical Properties

- \triangleright The reflection function of a nonabsorbing band (e.g., 0.75 µm) is primarily a function of optical thickness
- \triangleright The reflection function of a near-infrared absorbing band (e.g., 2.16 µm) is primarily a function of effective radius
	- clouds with small drops (or ice crystals) reflect more than those with large particles
- \triangleright For optically thick clouds, there is a near orthogonality in the retrieval of $τ_c$ and r_e using a visible and near-infrared band

Nakajima and King King et al. (1992)

Cloud Optical & Microphysical Retrievals Cloud Optical & Microphysical Retrievals Retrieval space examples

Cloud Optical & Microphysical Retrievals Cloud Optical & Microphysical Retrievals Retrieval space examples

ocean surface ocean surface

ice surface ice surface

Terra/MODIS Cloud Thermodynamic Phase (M. D. King, S. Platnick, J. Riedi et al. – NASA GSFC, U. Lille)

True Color Composite (0.65, 0.56,

Thermodynamic

Clear Liquid water Ic Uncertain

Collection 5

Cloud Optical Thickness and Effective Radius (M. D. King, S. Platnick – NASA GSFC)

Cloud Optical Cloud Effective Radius

Monthly Mean Cloud Fraction by Phase (M. D. King, S. Platnick et al. – – NASA GSFC)

July 2006 (Collection 5) **Terra**

- \triangleright Liquid water clouds
	- $-$ Marine stratocumulus regions
		- \checkmark Angola/Namibia
		- \checkmark Peru/Ecuador
		- \checkmark California/Mexico
- \triangleright Ice clouds
	- $-$ Tropics
		- \checkmark Indonesia & western tropical Pacific
		- √ ITCZ
	- Roaring 40s

Cloud Fraction (Liquid Water)

Monthly Mean Cloud Optical Thickness (M. D. King, S. Platnick et al. – – NASA GSFC)

July 2006 (Collection 5) Terra (QA Mean)

- \triangleright Liquid water clouds
	- Marine stratocumulus τ_c ~ 15
	- Higher optical thickness over land than ocean
		- \checkmark Cloud optical thickness near 5 in Indian Ocean
	- $-$ High optical thickness around roaring 40s
- \triangleright Ice clouds
	- –Larger in tropics (ITCZ)
	- $-$ High where deep convection occurs
		- \checkmark Congo basin
		- \checkmark Amazon basin
	- High optical thickness around roaring 40s
	- $-$ Higher over land than ocean

Cloud Optical Thickness (Ice)

Monthly Mean Cloud Effective Radius (M. D. King, S. Platnick et al. – NASA GSFC)

July 2006 Terra (QA Mean)

- \triangleright Liquid water clouds
	- –Larger drops in SH than NH
	- $-$ Larger drops over ocean than
		- \checkmark Due to cloud condensation nuclei (aerosols)
- \triangleright Ice clouds
	- $-$ Larger in tropics than high latitudes
		- **√ Anvils**
	- $-$ Small ice crystals at top of deep convection

Cloud Effective Radius (Ice)

MODIS τ_c vs r_e Joint Histograms Liquid Water Clouds over Ocean

32°-40°N, 117°-125°W July 2006 July 2006

MODIS and ISCCP-like $\tau_{\rm c}$ vs ${\sf p}_{\rm c}$ Joint Histograms

GEWEX Project

MISR

MODIS

CALIPSO

AIRS - Temperature & Water Vapor Profiles

Temperature Profiles Accurate to 1K/km to 30 mb

Water Vapor Profiles Match Observations 15%/2km

ISSUES (1) – CLOUD ALBEDO EFFECT W/ VARYING *LWP*

Synoptic-Scale Clouds – Combined Satellite & Model Analysis

Schwartz et al., *PNAS* 2002

- Two **week-long events** in April 1987
- **Low-level** (T_c) -cloud-filled (σ_{min}) pixels used
- **AVHRR 0.67** & 3.7 micron bands for τ_c and r_c
- $LWP = 2/3 \rho_w \tau_c \ll r_c$; with $\ll r_c$ = 0.82 r_c
- α_c (cloud top spherical albedo) ~ $(\tau_c; g)$ g=assym. factor
- **Aerosol Transport Model** predicts sulfate aerosol loading
- r_c decreased by \sim half at the peak of each event
- τ_c **and** α_c **show no systematic change**
- LWP decrease with r_c (though $LWP \sim$ cloud dynamics)

• α_c **increased by 0.02 to 0.15** with decreased r_c , for data **stratified by** *LWP* [i.e., comparing only perturbed & unperturbed having same *LWP*]. Sensitivity greatest for intermediate *LWP* ($\sim 100 \text{ gm/m}^2$)

ISSUES (2): VERTICAL STRUCTURE r_c – CLOUD 'TOP' VS. CLOUD COLUMN, & LTS

Matsui et al., GRL 2004

- TRMM data, March-May, 2000; 37°N to 37°S
- Vis-IR Radiance Imager (VIRS) for r_c (top), τ_c
- Microwave Imager (TMI) for r_c (col), *LWP* (19, 37GHz)
- Warm clouds only $(T_c > 273 \text{ K})$
- VIRS to find cloud-filled TMI pixels
- \bullet A*I* from **MODIS**
- Lower Trop. Stability (*LTS*) from **NCEP**
- IE appears larger for r_c (col) than r_c (top)
- Higher LTS and/or $AI \sim$ reduced r_c and suppressed rain conditions
- Aerosol effect \sim 50% larger than LTS effect
- TMI LWP decreases with reduced $r_c \rightarrow$ net change in cloud albedo SMALL

 $[d\alpha/dLTS \rightarrow 9\%; LTS$ effect dominates]

ISSUES (3): PARTLY-FILLED PIX, SCATT. LIGHT BIASES

Coakely et al., J. Atmosph. Sci. 2005, JAOTech 2005; Loeb&Manalo-Smith, J Clim 2005

- VIRS 0.64, 1.6, 3.7, 11 μ m
- Low-level, single-layer clouds
- Identify **cloud-free** pixels: *land/water* $(0.64/1.6 \text{ 'NDVI'}) + (for 3x3)$ σ (0.64 & 11) + threshold (0.64 & 11)
- Find remaining pixels that are overcast: σ (0.64 & 11) + threshold (0.64 & 11)
- Remaining are **partly cloudy** except if T_{12} cloud-free pixels; or T_{12} overcast pixels

- Broken cloud found in 40% of 2 km pixels
- A simple threshold approach **overestimates** r_c , C_f , and **underestimates** τ_c , z_c , N_c compared to *Partly Cloudy Pixel* [MODIS cloud algorithm flags large r_c , small τ_c pixels as uncertain]
- $\bullet C_f$, τ_c , r_c , N_c decrease with increasing fraction cloud-free
- Results depend on cloud type, weakly on spatial resolution

ISSUES (4): LARGER-SCALE SAMPLING BIASES

Example: *Rosenfeld and Feingold*, *GRL* 2003

First Indirect Effect: *IE* **~ -d** *ln rc* **/ d** *ln* ^τ *^a*

AVHRR – [*IE* **~ 0.17] over ocean**

- **partly filled pixels, surface contributions** $\rightarrow r_c$ **errors**
- **biased aga inst thin & broken cloud, especially over land**

POLDER – $[IE \sim 0.085]$ over ocean; $[IE \sim 0.04]$ over land

- **"glory"** to get $r_c \rightarrow$ favors monodisperse, uniform clouds
- **biased aga inst: thicker clouds, variable top height &** *rc*

Thinner clouds \rightarrow smaller upd rafts, less activation, smaller *IE* So PO LDER may produc e artificially low regional *IE* estimates

Brief Highlights of *Some* **More Satellite-Related Recent Work**

Indirect Effects Observed

Lebsock et al JGR 08 – [high aerosols ~ reduced LWP] for non-ppt. **warm oceanic clouds**, especially less stable cases; *not* for almost-ppt. clouds

L'Ecuyer et al. JGR 09 – More CSU multi-satellite confirmation of 1st and 2nd indirect effects for **warm maritime clouds**

Jiang et al. GRL 08 – S Am. dry season **polluted ice clouds** have smaller r_c and precipitate less (TRMM; MODIS; MLS CO and LWP data used) *Gasso, JGR 08* – Weak **volcanic activity** increases BL cloud brightness and decreases r_c and LWP.

Bell, Rosenfeld, et al. JGR & GRL 08 – Higher TRMM & maybe surf. rainfall **mid-week in SE US**; lower in adjacent Atlantic \rightarrow arsl. effect(?)

Satellite Retrieval Issues

Wen, Marshak, et al. JGR 08 – **Aerosol** retrieval 3-D Radiative effects, bluing due to cloud \rightarrow Rayleigh scattering (theory + field observations)

*Zhao, Di Girolamo, et al***.** *GRL 09* – RICO: **sub-pixel (<1.1 km) tropical cumulus** biases MISR AOD less than 10-2 in regional average

Tackett & Di Girolamo GRL 10 – nighttime CALIPSO show enhanced aerosol size and number concentration near cloud

Su et al. JGR 08 – Near-cloud **RH &/or cloud processing**: AOD 8%–17% higher within 100 m of E US clouds based on HSRL

Twohy, Coakley, Tahnk JGR 09 – **INDOEX:** 5% RH increase approaching clouds \rightarrow *observed* ~50% aerosol scattering increase

Horvath & Davies GRL 04, Di Girolamo et al. GRL 10 – Maritime Cloud retrieval 3-D Radiative effects on r_c and τ_c

CCN Characterization from Space

Dusek et al. Sci 06 – **Size matters** more than chemistry for CCN (84-96% of total for the 06 study),

Hudson GRL 07 & Dusek et al. GRL 10 – Chemistry is more difficult to measure, but it matters too

Clarke & Kapustin Sci 10 – Aircraft **CO**, volatile and non-volatile AOD, which can be measured from space, as region-specific CCN concentration proxies

SATELLITE CONTRIBUTION: WHERE WE'VE BEEN

 \rightarrow Need to measure **both Causes** (Aerosols) and **Effects** (Clouds)

[My Opinion]

- First Indirect Effect
- Cloud Radius
- Albedo

Special Cases Global Scale*

quantitatively qualitatively quantitatively? qualitatively?

- Second Indirect Effect
- Cloud Lifetime **qualitatively** qualitatively? quantitatively qualitatively? $-LWP$
- \rightarrow Sign apparently depends on conditions not yet well-understood
- Semi-direct Effect
- Cloud Darkening $-$ Thinning

qualitatively ?? qualitatively ??

*Primarily or exclusively for single-layer, stratiform water clouds