www.jrc.ec.europa.eu

EMISSION DATABASE FOR **Comparing aerosol emission estimates using** different approaches and emission factor datasets in EDGAR

G. Janssens-Maenhout, M. Muntean, A.Hjadu, J. Olivier, R. Petrescu, V. Pagilari, F. Dentener, J. Wilson, E. Vignati

Start Research Centre

ABSTRACT

Much of the uncertainty in estimates of aerosol effects on climate change is due to the continuing large uncertainties in black or elemental (BC or EC) and organic (OC) carbon emission inventories. We have derived EC emission inventories by combining source profiles with both particulate matter (PM) emission factor and sectorspecific mass fractions for EC, and technology-specific combustion models to that directly estimate EC emission factors. Differences between both approaches are evaluated by comparing sector- and country-specific emission trends of EC inventories applying the Bond or GAINS approach. The resulting gridmaps using Bond approach for USA and GAINS approach for Europe and China were assessed for different sectors by comparing these with the EDGAR-HTAP patchwork of officially accepted EC emission inventories.

"Official" EDGAR-HTAPv1.1 versus "scientific" EDGARv4.2

SLOBAL

ATMOSPHERIC RESEARCH

http://edgar.jrc.ec.europa.eu

The EDGA	AR-HTA	Pv1.1				EMEP data (N	FR08) commur	icated by TFE	IP. R. Wankm	ueller (2009)					
inventorv of man-				UNFCCC GHG inventories, nationally reported (2008)											
made emissions				US EPA data for USA, communicated in gridmaps by Battye (2008) GAINS inventory for China, communicated by Klimont (2008)											
covers for the time				REAS inventory of Ohara (2007) communicated by J. Kurokawa (2008) REAS inventory gapfilled for agricultural sectors with EDGABy4 1)					
period from 2000 to				EDGAR v4.1 data as online since July 2010											
2005 the	oni 20 ooidifi	ootion				EDGAR v4.2 p	reliminary vers	ion 2010							
2005, life	aciuiii				CH4	со	NOx	SO2	NMVOC	NH3	PM10	PM2.5	BC	ос	
	e precu	rsors:		Europe+Canada +Iceland	29.806	44.224	15.342	13.942	15.324	5.561	5.841	2.549	0.364	0.901	
CH_4 , CO, NO _x , NMVOC,				Russia+ Moldova	25,509	17.111	5,796	2.775	5.608	1.125	1.071	0.626	0.115	0.42	
SO ₂ and	NH _{3.}	and		+Ukraine+Turkey											
aerosols F	РМ10, Н	РМ2.5,		USA	25.112	90.588	20.372	15.507	17.831	3.915	13.198	4.457	0.157	0.296	
BC & OC. The 2000				Japan	2.107	3.018	2.017	0.044	2.117	0.44	0.254	0.167	0.067	0.044	
emissions per world				Rest Annex I (Oceania)	6.437	4.918	1.832	2.997	0.957	0.762	0.305	0.151	0.024	0.073	
specie)/yr [Cfr. Streets et al., HTAP report Ch.3, (2010)] compared to			China	56.03	144.384	16.926	31.528	23.876	12.545	17.883	12.725	1.366	2.812		
				Rest Eastern, Southern Asia	62.071	211.425	15.057	15.33	26.087	13.11	25.359	12.586	1.779	7.378	
				Rest Non-Annexl (Africa, Latin-	97.333	112.889	17.319	20.864	40.385	9.249	11.543	8.673	1.162	4.365	
the	EDGA	Rv4.2		International bunkers	0.442	1.459	14.812	8.019	4.756	0	1.324	1.311	0.036	0.105	
different w	orld re	aions		Total in 2000 Tg species	304.847	630.016	109.473	111.006	136.941	46.707	76.778	43.245	5.070	16.394	
		9											. .		
EDGARV4.2 /EDGAR-HTAPv1.1	CH4	со	NOx	SO2	NMVOC	NH3	PM10	PM2.5	вс	00		Differe	nces to	r Pivi	are
Europe+Canada	1.11	1.11	0.86	0.86	1.19	1.10	0.48	0.17	1.06	1.0	3	noticed	sticed because:		
Russia+ Moldova +Ukraine+Turkey	1.12	2.51	1.15	2.87	1.88	2.19	4.31	3.79	2.75	4.5	7	1. Dep	Depend on techno-		
1150	1.05	1.02	0.89	0.78	0.80	0.85	0.14	0.10	1.37	1.9	9	2 Fev	v non-s	tanda	ard
	1.07	3.69	1.29	3.59	1.70	0.86	1.33	0.11	0.46	1.0	9	pla	plants using non-		
Rest Annex I	1.13	5.55	1.23	0.87	2.45	1.39	11.03	12.81	7.82	17.8	30	sta	standard fuel (e.g.		
(bicalia)	0.88	0.54	0.73	0.63	1.09	0.70	0.37	0.02	0.79	1.0	4	ligr	nite ins	tead c	of
Rest Eastern,	0.79	0.50	0.71	0.82	0.89	0.50	0.46	0.12	0.65	0.6	3	bitu	uminou	s pop	up
Southern Asia	0.75	0.50	0.71	0.02	0.05	0.00	0.40	0.12	0.05	0.0		3. Hia	h unce	rtaint	y of
(Africa, Latin-	0.75	2.96	1.02	0.62	1.12	1.15	3.22	2.12	2.12	3.2	²⁶ real removal ef			al eff	- 1-
America)												cie	ncv dei	oendi	na
bunkers	1.00	1.00	1.00	1.00	1.00		0.86		0.86	0.8	0.86 on plant operati			ion/	
global	0.88	1.18	0.88	0.80	1.05	0.84	0.90	0.59	1.16						
												ma	incial		

SO₂ aero **COMPARISON of DATASETS** BC emi regi **EOLO** platform spec et al (201 EDGARv4 = ADxEF **EDGAR-HTAP** = ΣEM_i the An inventory for ozone precursors and particuemis **Collection of official inventories Technology-based calculations** diffe late matter was constructed for the Task EDGAR EDGARv4.0: for 1970-2005: HTAP_V0: for 2000-2005: /EDGAI Force on Hemispheric CH4, SO2, NOX, CO, NMVOC, NH3, CO₂, CH₄, N₂O, HFCs, PFCs, SF₆ Europe Transport of Air Pollu-+lcelan http://edgar.jrc.ec.europa.eu, May '09 PM10, PM2.5, BC, OC (2000-2005) Russia+ tion at the EOLO-web-+Ukrair http://edgar.jrc.it/eolo, May '10 server, with EMEP-data USA EDGARv4.1: for 1970-2005: v4.0 GHG (2009), UNFCCC (2009) -Japan HTAP_V1: for 2000-2005: V0 corrected + CO, SO₂,NO_x, NMVOC, NH₃ data for CH4, GAINS Rest An (Ocean (2008) for China, REAS http://jrc.ec.europa.eu, July '10 CH4 & AP & aerosols corrected China Rest Eas (2007) for East-Asia, w/o Savannah burning & pave dust gapfilled with EDGAR Souther Rest No EDGARv4.2: 1970-2008: v4.1 GHG&AP http://edgar.jrc.it/eolo (passwd) v4.1 and gridded with aggregated maps for HTAP, corrected + aerosols (PM10, PM2.5) (Africa, EDGAR's proxy data. Americ Streets et al., HTAP, Ch. 3 (2010) to be released Interna [Cfr. Dentener et al (2011)] bunker global

CASE STUDY: IMPACT OF REGION-SPECIFIC UNCONTROLLED PM EMISSION FACTORS FOR DIFFERENT POWER PLANT TECHNOLOGIES IN EU27

How does the total PM10 emissions for the Power Plants in Europe compare, using (1) EDGARv4.2 database with Corinair based emission factors and EDGAR PP controlled technology, (2) GAINS uncontrolled emission factors (Kupiainen & Klimont, 2007) combined with EDGAR's controlled technology, and (3) AP-42 (Bond et al., 2007) uncontrolled emission factors with the same EDGAR specifications ? POWER PLANT SECTOR: well-known but very differentiated in technology and end-of-pipe **ROAD TRANSPORT SECTOR: More certain except Superemitters** Power plant emissions in EU-27

2005

HTAP /EFgains

2005

Efgains /EFbond 2005

111 17 180 180 180 18 18 18 18 18 18 18 18 18 18 18 18 18		and a second sec		0.0e+0 2.0e-5
	ALL	The state	The second	2.0e-5 2.0e-4
	300	1 Bringer		2.0e-4 1.0e-3
· service for the service of the ser	100	2 2 2	a la se	1 00-3 1 00-2

2001

2000

EDGAR-HTAPv1.1

ED AR

CASE STUDY: IMPACT OF TECHNOLOGICAL EU STANDARDS ON WORLD-WIDE ROAD TRANSPORT EMISSIONS OF PM10

What would have been road transport emissions in 2005 if the technological development of EU standards stagnated at Euro level 1 or at level 3 in Europe and elsewhere?

EUROPEAN COMMISSION

EDGAR Project team:

G. Janssens-Maenhout, M. Muntean, A. Hajdu, V. Pagliari, A.M.R. Petrescu, R. Abad-Vinas, J. Wilson, D. Guizzardi, A. Orive-Meijide, J.J.G. Olivier (PBL), J.A.H. Peters (PBL) Acknowledged: J. van Aardenne, U. Doering, S. Monni, B. Murphy, G. Oreggioni

Contact:

edgar-info@jrc.ec.europa.eu EC • Joint Research Centre Institute for Environment & Sustainability Climate Change & Air Quality Unit

